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ABSTRACT
A new technique for designing causal and
minimum-phase FIR and IIR digital filters is
presented. Here, the deviation from a desired
quefrency response is minimised using the Fletcher-
Powell algorithm. As a consequence, this leads to
an optimisation of both log-magnitude response and
phase response. Therefore, the method is of special
interest for both equalisers and allpasses. It works
with real parameters which represent the poles and
zeros of the system.

1  INTRODUCTION

Digital Filters can be designed in three different
domains: in the time domain, in the frequency
domain, or in the quefrency domain. While in the
time domain, we approximate a desired impulse
response ( )h kd , in the quefrency domain we

approximate a desired quefrency response ( )�h kd .

Generally, the quefrency response ( )�h k  of a

system is defined as the cepstrum of the impulse
response of the system,

    ( )� : {log( { ( )})}.h k Z Z h k= −1              (1.1)

In the above equation, Z  denotes the Z-transform

and Z −1  denotes the inverse Z-transform,
respectively. It is clear that (1.1) can be
approximately carried out by using FFT. Moreover,
if we write the transfer function ( )H z  of a system in

terms of  its poles z iP ( )  and zeros z i0 ( ) ,
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where C  is a real constant, we can express the
quefrency response of the system as follows:

( )
( ) ( )

�

log

h k

C k

z i

k

z i

k
k

k
p
k

i

n

i

m

=

=

− + ≥













==
∑∑

for

for

else .

0

1

0

0

11

                 (1.3)

All this is well-known [8]. However, the last
equation is only  valid if z i0 1( ) ≤ and z iP ( ) < 1

for all i , that is, if the system is causal, stable and
minimum-phase. Easily we see that the quefrency
response of such systems is causal. Now, from (1.1)

and  (1.2) it follows that for z e j= Ω ,

( )Z h k H e H e jbj j{ �( )} log{ ( )} log ( )= = −Ω Ω Ω  ,

(1.4)

where H e j( )Ω  denotes the frequency response of
the system and b( )Ω  denotes its unwrapped phase
response. Inserting this into Parseval’s theorem for
causal sequences [9] we get
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where all of the quantities indexed d  are desired
quantities.  From (1.5) we see that optimising the
quefrency response of a system means also
optimising its log-magnitude response and its phase
response. Therefore, this is of special interest
for equalisers, because the log-magnitude response
of the cascade of the equaliser and the system to be
equalised is equal to the log-magnitude response
error of the equaliser. While well-known design
techniques exist, which optimise the frequency
response of a system [1] or the impulse response of
a system [10], filters obtained until now from
quefrency domain design techniques are of a special
class [3], [4], and are suitable for fast design [5],
[6], [7], but are not optimal with respect to the
number of multipliers.  Therefore, in this paper we
present a synthesis procedure which minimises an
error measure in the quefrency domain. Filters
obtained employ a minimum number of multipliers,
under the condition that their transfer functions may
be expressed in the form (1.2). Moreover, we
assume that both complex poles and zeros occur in
conjugate-complex pairs. Apart from this restriction
they can take any position inside the unit circle, and
so m n+ +1 real multipliers are required for the
filter realisation. It should be clear that halfband
filters, for instance, do not fit into this category.
Further, both m and n  can be chosen  arbitrarily,
and so also FIR filters and all-pole filters can be
designed.

2 SYNTHESIS PROCEDURE

First we introduce the above-mentioned error
measure,

F h k h kd
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L  is an upper limit, which must be finite in order to
be able to calculate (2.1) on computers.
Theoretically, it should be infinite. In practise, we
should choose L  great enough, such that F  will no
more change its value decisively if we increase L .
We want to minimise F  by using the Fletcher-
Powell algorithm [2]. Towards this end, we express

(1.2) as a function of the real parameters
x p q a i b i c i d i( ) { , , ( ), ( ), ( ), ( )},ν ∈
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where  y  denotes the integer part of y , and

p = 0   ( )q = 0 , if the numerator degree

(denominator degree) is even. Clearly,  for p ≠ 0 ,

p  is a zero of the filter, and the other zeros can  be

expressed as
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( )ν = − ± −       .       (2.3)

We  now need the partial derivatives of F  with
respect to the parameters x i( ) . First, from (2.1) we
get
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Next, we insert (2.3) into (1.3). Hereby, noting that
a pair  of parameters a i b i( ) / ( ) corresponds to a
pair of zeros, which are either both real or
conjugate-complex. From this, with
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If the two zeros considered are  a conjugate-
complex pair, then Y  becomes purely imaginary,
and (2.5.1) can also be expressed as
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Moreover, we obtain

∂
∂

�( )

( )
[(

( )
) (

( )
) ]

h k

b i Y

a i
Y

a i
Yk k= − + − − −− −1

2 2 2
1 1

,
(2.6.1)

or, if Y  is  purely imaginary,
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Similarly, we obtain for the real zero p

∂
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pk= − −1        .                 (2.7)

With (1.3), (2.2) and (2.3) it is easy to see that the

last five equations also hold for 
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 respectively, if a i( )  is replaced by

c i b i( ), ( )  by  d i( ),  and p  by q , respectively, and

if all of the expressions on the right-hand side of the
last five equations are multiplied by −1 . Further,
from (1.3) we see with (1.2) and (2.2), that we have
to choose

C hd= exp( � ( ))0                           (2.8)

for the  gain level, thus getting the element � ( )hd 0

of the desired quefrency response exactly. Further,
the parameters x( )ν  we have chosen above for the
Fletcher-Powell algorithm represent the poles and
zeros of the system, and therefore, they have no

influence on � ( )hd 0 . For this reason, we have

chosen 1  for the lower limit of the sum  in (2.1)
(instead of  0 ).
In the numerous design examples worked out, the
filters obtained, in general, turned out to be causal,
stable, and minimum-phase, with the upper limit in

(2.1), L , usually in the order of 50  to 500 . In rare
cases with L  chosen too small, poles and/or zeros
may be located outside (but near) the unit circle,
which, however, may be remedied by increasing the
value of L .

Fig. 1: Desired log-magnitude response (thin
line) and approximating one (thick, smooth

Line) for a 6 th order IIR filter

One of the examples is shown in Fig. 1. Here, the
value of F  for H z( ) ≡ 1(and, consequently,
�( )h k ≡ 0 ) has been 1485.  This value has  been

reduced to 0108.  using a filter with both numerator
and denominator being of order 6 , hence requiring
13  multipliers. We see that the desired log-
magnitude responses must not necessarily be
smooth curves. They may rather be complicated
ones, as it is the case, for instance, with those of
loudspeakers in living rooms.
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