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ABSTRACT

Archival of images in databases, enabling further study
with respect to their contents, is at our focus of atten-
tion. The major difficulties are i) the processing of a
large number of images, ii) that the steadily growing
number of images increase the complexity of the pat-
tern recognition problems to be solved. We propose
orientation radiograms, to be used as image signatures
for shape based queries. These are the projections of a
set of orientation decomposed images (here 6) to axes
whose directions change synchronously with the orien-
tation bands at hand. The peaks in the radiograms
represent long edges or lines which are important for the
human when he recognizes or compares images. We pre-
sent the results of experiments based on approximately
400 images in an application concerning typographic or-
nament images. Also 1s presented a comparative study
comprising classical moment invariants.

1 Orientation Radiograms

Image databases in general contain many images so that
the discrimination task becomes very difficult as the glo-
bal complexity of the shapes to be described is very high,
meaning that low dimensional image signatures are not
sufficiently powerful for shape description,[1, 2]. We de-
compose an image into its iso-orientation images (briefly
orientation images) i.e. each component image of the de-
composition corresponds to the response of a filter tuned
to one orientation. All other orientations are suppres-
sed which means that an “X-ray” in the direction of the
”pass” orientation will ideally not intersect any edge ele-
ment since otherwise that would mean the existence of
other orientations than that of the tuned in a compo-
nent image. Of course the X-ray will encounter edge
elements, but it will “traverse” them, and not intersect
them. Summing the responses of the component image
along such parallel rays yields a one dimensional image,
which we will call an orientation radiogram.

In order to illustrate the representation of shape by
orientation radiograms, we consider the image of a re-
ctangle, see the figure 1, and assume that we have 6
orientations in our decomposition. Only 2 orientation

images have non-zero responses, corresponding to the
orientations of 0° and 90°. If we consider the projections
of the orientation images along parallel rays correspon-
ding to the tuning of the image, we obtain 6 1D signals,
[Fig.2]. These signals allow to characterize the rectangle
with respect to another object.
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Figure 1: Schematic decomposition of a rectangular
image based on 6 privileged orientations.
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Figure 2: Schematic projections of the previous decom-
position.

2 Orientation Decomposition

Two practical tools to perform the orientation decompo-
sitions which can be applied to the database population
stage 1.e. each time an image is added, are linear sym-



metry computation [3], and Gabor decomposition, [4, 5].
We will describe the first approach briefly.

An efficient method to get the local orientation in-
formation 1s to compute linear symmetry of the ima-
ges. This method computes for each pixel a vector, li-
near symmetry, where its argument gives the dominant
orientation of the local neighborhood and its magnitude
stands for the certainty. By construction, only neighbor-
hoods with a dominant orientation give high certainty.
The argument should not be confused with that of the
Gabor phase, which represents the edge type. It can
be shown that, the linear symmetry computation fits an
optimal line to the local power spectrum which is given

by ,
z = (Vf) * M (1)

where f, Vf, #m represent the original (grey level)
image, the complex image f; + f¢, convolution with an
averaging filter, respectively. The next step is to obtain
the six orientation images, r;(Z) which we do as:

{
rl:|z|cosz(91—g0), 6; = %,120,...,5 (2)

where 6; corresponds to a tuned orientation, ¢ repre-
sents the argument of the linear symmetry vector, z. It
can be shown that r; corresponds to the inertia of the
local power spectrum w.r.t. the direction represented by
;. Tt is maximum, |z|, when 8; = ¢+ nn, and it is mini-
mum, 0 when 0; = ¢+ % +nw. However, the decrease in
the response when the linear symmetry orientation de-
viates from that of the tuned one 6;, 1s not controllable
above. Therefore we suggest:

ri() = |z] (exp(Bcos®(1 — ¢)) = 1) (3)
in order to steer the orientation selection sensitivity
through the factor 8. |z| is normalized linearly, so that it
varies between 0 and 1 in one orientation image. Conse-
quently, r; can be rescaled linearly so that it is in [0, 1],
when a suitable [ is determined experimentally. The
implementation of projection computation is simplified
if each image is suitably rotated followed by horizontal
or vertical summation. However, oblique scanning and
summation of orientation images is also possible, as an
alternative.

3  Fourier Coefficients Distance

The maxima in the radiograms are important since they
correspond to long edges. Since a set of ten Fourier coef-
ficients, leaving out the DC component, seem to preserve
the peaks, we truncated the number of the complex Fo-
urier coefficients at 10. We take the real part and the
absolute value of the imaginary part of the Fourier co-
efficients in order to obtain invariance in a flip of the
image (4). That is, since the radiograms are real fun-
ctions we have,

R(E(v))
S(F(v))

R(F(~1)) = RGW)) (4)
~S(F(-v)) = ~3(G(W))

where F(v) represents the Fourier coefficient of the or-
nament and G(v) the Fourier Transform coefficient of
the flipped image. The coefficients allow to build 6 fe-
ature vectors, each representing one radiogram, that will
be used when comparing the ornaments.

The comparison between the feature vectors of a scan-
ned image and those corresponding to the images in the
database is made by computing a distance which is the
sum of the Euclidean distances, here 6, between the cor-
responding feature vectors. The sorted distance allows
to find the classes that match the scanned image. That
i1s, we do not have to attribute a class but we have to
display images that have similarities with the scanned
image. False misses are not allowed, but a limited num-
ber of false matches is tolerated. An example of a query
showing the 5 closest classes is shown in figure 3.

4 Results

The scanned images must be “recognized” even if they
have variations in grey scale, translation and rotation.
The Fourier Transform is invariant to translation (cycli-
cal). The rotation invariance can be dealt with the ro-
tation of the image before the start of the orientation
decomposition. This can be done by using the first few
orders of the moments. We note that a zero order mo-
ment represent the image surface, the first order gives
the centroid of the picture, and the second order cha-
racterizes the main direction (orientation). Thus the
global orientation variances can be compensated for.

The experimental database is made of 39 ornaments
scanned from old books in the possession of the Univer-
sity Library of Lausanne, [6]. From this set, 37 clas-
ses can be extracted since two pairs represent the same
class, but digitally differ. [OR36] and [OR25] are there-
fore missing from the misclassification tables below. Due
to the fact that books are small and old, ornaments are
photocopied and then scanned. Of course, this manipu-
lation introduces further noise. To measure the orna-
ment dissimilarities, for the purposes of this work, we
have generated synthetic pictures from the original set
because we do not dispose many images of the same
class. A training set has been built in order to create
reference features. The mean value of the radiogram Fo-
urier coefficients of 5 geometric transformations are ta-
ken as reference feature vectors. These transformations
are, 1) 2° rotation 2) -4° rotation and flip up-down 3)
90° rotation 4) -2° rotation and flip left-right 5) gamma
correction with 4 = 3. Thus there were 195 images in
the training set.

To evaluate the validity of the class identification we
have chosen to make 5 new transformations on the ori-
ginal set in order to use them as a test set. These
transformations, resulting in 195 test images which are
different than those in the training set, are, 1) 5° ro-
tation 2) -3¢ rotation 3) -90° rotation 4) flip left-right
5) flip up-down. The table 1 shows the misclassification



bc 26 28 33 tot rate

1 5 0 0 0 51.00
2 5 2 3 0 5050
3 5 0 0 0 51.00
4 5 0 0 0 51.00
5 5 0 0 0 51.00
6 5 0 0 0 51.00
7 5 0 0 0 51.00
8 5 0 0 0 51.00
9 5 0 0 0 51.00
10 5 0 0 0 51.00
11 5 0 0 0 51.00
12 5 0 0 0 51.00
13 5 0 0 0 51.00
14 5 0 0 0 51.00
15 5 0 0 0 51.00
16 5 0 0 0 51.00
17 5 0 0 0 51.00
18 5 0 0 0 51.00
19 5 0 0 0 51.00
20 5 0 0 0 51.00
21 5 0 0 0 51.00
22 5 0 0 0 51.00
23 5 0 0 0 51.00
24 5 0 0 0 51.00
26 5 0 0 0 51.00
27 5 0 0 0 51.00
28 5 0 0 0 51.00
29 5 0 0 0 51.00
30 4 0 0 1 4080
31 5 0 0 0 51.00
32 5 0 0 0 51.00
33 5 0 0 0 51.00
34 5 0 0 0 51.00
35| 10 0 0 0 101.00
37 5 0 0 0 51.00
38 5 0 0 0 51.00
39 5 0 0 0 51.00

Table 1: Confusion matrix using Fourier coefficients, li-
near symmetry and difference vector classification. Ver-
tically we find the different original ornaments. be repre-
sents the number of ornaments which have been well
classified. In case of misclassification we observe that
the sample was assigned either to class 26, 28 or 33.
The corresponding occurences are shown in columns la-
beled 26, 28, 33. The recognition rate 1s shown in the
column denoted rate.

of our method, using orientation radiograms computed
with linear symmetry. Table 2 allows to compare our
result with a classical method. In radiogram features,
the recognition is fairly robust despite various synthetic
(gray level as well as geometric transformations, inclu-
ding flipping) and natural disturbances, which in turn
suggests that the used metric for image distance me-
asurements captures well what the experts observe. We
can see this in table 1 at line 35 where the transformed
images of OR36 are attributed to the class 35 since the
value 10 is in the diagonal cell. For the class 2 we do
not have perfect merging but the attributed classes are
very similar. The radiogram Fourier coefficient classifi-
cation with the linear symmetry decomposition resulted
in the rate of 97% correct classifications, which is obta-
ined by dividing the trace by the sum of all elements
of the confusion matrix, which should be compared to
Reddi’s moment invariants based features [7], 49 %, used
for pattern recognition purposes. We chose Reddi’s inva-
riants for comparison since they performed slightly bet-

bc 01 0310111316 1819 20 21 23 26 28 34 38 39 tot rate

1 500000O0OO0O0O0O0ODODO®DOD®O®O0O 5100

2 500000O0O0O0O0300O01O01 5050

3 500000O0OO0O0O0O0ODODO®DOD®O®O0O 5100

4 500000O0OO0O0O0O0ODODO®DOD®O®O0O 5100

5 500000O0OO0O0O0O0ODODO®DOD®O®O0O 5100

6 500000O0OO0O0O0O0ODODO®DOD®O®O0O 5100

7 500000O0OO0O0O0O0ODODO®DOD®O®O0O 5100

8 05 0000O0OO0O0O0O0ODOOODOOO0O 0000

9 00005 00O0O0O0O0OOODO®O®OO0O 0000

10 005 000O0OO0O0O0O0OOOOOOO0O 0000
11 500000O0OO0O0O0O0ODODO®DOD®O®O0O 5100
12 00005 00O0O0O0O0OOODO®O®OO0O 0000
13 500000O0OO0O0O0O0ODODO®DOD®O®O0O 5100
14 500000O0OO0O0O0O0ODODO®DOD®O®O0O 5100
15 500000O0OO0O0O0O0ODODO®DOD®O®O0O 5100
16 0014000O0O0O0O0O0OO0OO0OO0O®OO0O 0000
17 500000O0OO0O0O0O0ODODOOOO0O 0000
18 00o0O0O0ODODODOOS500O0O0O0O0OO0O 0000
19 000O0OODOS5O0O00O0O0OO0OO0OOO0O 0000
20 000O0OODOOOOODOODOODOS5 0000
21 00o0O0O0ODODODOOS500O0O0O0O0OO0O 0000
22 000O0O0ODODODI1O0OODOM400O0O0 0000
23 500000O0OO0O0O0O0ODODO®DOD®O®O0O 5100
24 000O0ODODOOOOODODODA4O0 10 0000
26 000O0O0ODODODOO11 4000000 0000
27 005 000O0OO0O0O0O0OOOOOOO0O 0000
28 000O0OODOOOOODOODOOS5 0 0000
29 500000O0OO0O0O0O0ODODO®DOD®O®O0O 5100
30 500000O0OO0O0O0O0ODODO®DOD®O®O0O 5100
31 500000O0OO0O0O0O0ODODO®DOD®O®O0O 5100
32 500000O0OO0O0O0O0ODODO®DOD®O®O0O 5100
33 500000O0OO0O0O0O0ODODO®DOD®O®O0O 5100
34 500000O0OO0O0O0O0ODODO®DOD®O®O0O 5100
35 005 000O0OO0O0O0O0OOOOOOO0O 0000
37 000O0ODODOOOOODOODOS®S5 0 0 0000
38 000O0ODODODOOOODI11IO0O0OT140 0000
39 000O0O0ODODS5O0O0O0O01O0O0O0O0OO0O 0000

Table 2: Confusion matrix using Reddi moment inva-
riants and difference vectors classification. In this case
we have several ornaments which are misclassified. For
example ornament number 8 has been associated with
ornament number 1.

ter than Hu’s, [8], and Maitra’s invariants, [9], on pat-
tern recognition tasks involving ornament images. We
could confirm the known deficiency of the moment fe-
atures, namely that they over emphasize the periphery
details on the cost of the central details in an image.
Figure 3 illustrates a query. An input image, on which
5 rotation, flip left-right and gamma correction with
7 = 0.4 has been performed, is used to look for the
five nearest classes. The algorithm has found the real
class as well as the only other 3 images belonging to
the same family. The fifth image does not belong to the
family but is displayed as the closest since b records were
requested. The latter illustrates very well the difference
of the database problem, where a false acceptance is
tolerated while a false rejection is not accepted, from a
pattern recognition of, for example, bank notes.

5 Conclusion

Our study suggests that orientation radiograms are su-
itable to efficiently describe the content of images for



Figure 3: Query result made on the top image. Top left:
input image, top right: nearest image and the following.

image database queries. Since radiograms are 1D signals
with many peaks, a limited set of Fourier coefficients al-
lows to characterize them well. Besides that the amount
of the signature data is small, this representation is very
interesting on its own, because invariance to flipping can
be easily obtained.

The method tested on ornaments can be without mo-
dification be applied to general gray images as binariza-
tion of images is neither required nor carried out in our
particular test bed.
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