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ABSTRACT

In this paper we address the problem of the Bayesian de-
convolution of a widely spread class of processes, filtered
point processes, whose underlying point process is a
self-excited point process. In order to achieve this de-
convolution, we perform powerful stochastic algorithm,
the Markov chains Monte Carlo (MCMC), which des-
pite their power have not been yet widely used in signal
processing.

1. Introduction

In this paper we recall a general modelization of filtered
point processes, which is useful in practice. We then use
it to model a particular class of filtered point processes,
whose statistics are periodic in time. We then present an
algorithm based on Markov chain Monte Carlo, which
estimates all the conditional densities of the parameters
of the process. We then present the results of a simula-
tion.

2. General modelization

Point processes are suitable tools that allow physicists to
model many situations of interest: indeed they are a nat-
ural way for modeling highly localized events occuring
randomly at given times or points of the state space. A
natural way of mathematicaly modeling such processes
is to use the following notion of counting process. Let
us consider N (1) a stochastic process such that:

dN (t) = 1in case of an event (1)
dN (t) = 0 otherwise

N () is thus the number of events that occured until time
t.

Furthermore, each of the event may have another
characteristic value #, (apart from its own time of oc-
curence), which may also be stochastic. The process
(N (t),8;),cg is named a marked point process.

Nevertheless in most situations, the underlying point
process does not appear directly as an observation. The
point process may be filtered (due to the width of the
bandpass of the detector, the reponse of a mechanical

structure to pulses...), and thus the observed process is
modelled as:
=Y h(t—t.8,) (2)

which may be rewritten using a stochastic integral in
the following useful manner:

v () = /]Rh(t— 0,8, AN (u) ®)

Then the statistics of the process may be defined. We
suppose the times and the marks to be independent, the
marks to be iid. Concerning the time of arrival, we
use the formalism of the so-called self-excited point pro-
cesses, that is we suppose the point process to be defined
with the following conditional probability densities (con-
sidering that no events happened before ¢ = 0):

P(t S tn+1 S t+dt/ N(tn) =n, tl—)n)
= A(t/N(t),t1on)dt + o (dt) (4)

(where t1,, = {t1,...,tp}) which we will note in order
to alleviate notations and when no confusion is possible
A(t). This definition leads to the interesting following
formula:

P(tpt1 <t/tisn)=1—exp (‘ /t A(t) dt) (5)

This formula is useful when simulating such point pro-

cesses [4]. The statistics of the process ¢ can be calcu-
lated using the multicoincidence densities [2] defined as
follows:

E(dN (t1) x ... % dN(tn)) (6)

A(t) HE

where the expectation is to be taken over the possible
realizations of N (.).

One can obtain for example the first order and second
order moments:

= fn(tl,...,tn /tl—n 1)

E(z(t)) = /E (t—wu,8,)) f1(u)du (7)
E(:L‘(tl)l‘(tQ)) = / tl—ul,Hu )h(t2—U272u2>>
(5 Uy — U2) f1 (Ul) + f2 (ul,uz))dulduﬂ



3. Application to cyclostationary processes

A stochastic process is said to be cyclostationary up to
order 2 when the corresponding statistics depend period-
ically on time [1], that is there exists T' € R such that:

E((t+T)) = E(=())
E(@(t+T)a(tz+T)) = E(@()a(t)) (8)

Assuming £ (.,.) to have a finite support and (¢,),cx
to be stationary, one easily deduces that the process ap-
pearing in the preceeding section is cyclostationary up
to order 2 if and only if:

NH(u+T) fi(w)
fL+T v+T) = fo(u,v) 9)

Furthermore, we show that the bifrequency representa-
tion of x will be these of

+co
o (t) =Y h(t—KT,8,;) (10)

but  weighted by the Fourier transform of
d(u1 —uz) fr(u1) + fa(ur,u2), which shows that
the more x 1s “time shifted”, the more its Fourier
transform 1s concentrated on the first diagonal of
the bifrequency plane, and thus weakens the DCS
(degree of cyclostationarity)[1] and the performance of
algorithms relying only on correlation property. It is
this stationarizing effect which motivated our work.

4. Bayesian solution to the problem

We model the observed signal in the following manner:
y(t) :/h(t—u,Qu)dN(u)—l—n(t) (11)
R

where n (t) is the observation noise. This leads to the
discrete observations yi_sp.

The Bayesian solution to the problem consists in eval-
uating the following conditional probability density:

P (tl—)P7Ql—>p71n71t719/y1—>n) (12)

where Y, Y, are respectively the parameters for the

observation noise, the intensity of the point process and
the parameters of the mark. The knowledge of this condi-
tional density will then allow us to calculate all the stat-
istics of interest, including MAP, confidence intervals,
expectations. It is worth noticing that we consider the
parameters v to be stochastic, which may not seem nat-
ural (on the contrary of the missing data t1p and Q1—>p)
to people not acquainted with Bayesian techniques, but
is common in the field: this may be seen as a regulariz-
ation constraint.

In order to make this evaluation, one will perform
a stochastic algorithm, a Markov chain Monte Carlo.

This class of algorithm allows one to construct a
Markov chain of samples whose equilibrium density is
p (tl—ﬂ”gl—wﬂln’lt’le yl_m). In other words, one
will construct the density with a chain of samples which
will represent it. We recall below the two most popu-
lar MCMC methods, the Metropolis-Hastings (MH) al-
gorithm, and the Gibbs sampler.

4.1. The Metropolis-Hastings algorithm

Suppose that one wants to sample from the following
multivariate probability density:

m(x) (13)

1. Set k = 0 and arbitrarily draw oS

2. Propose a candidate sample according to proposal dens-
ity ¢ (x(k),x(k‘i'l))
3. Accept this candidate with acceptance probability:

(2D Vg (o))

Q@WMHW={mm@vmwmwwﬂm}

lif (x(k)) q (x(k‘i'l),x(k)) =0

4. Set k =k +1 and go to 2.

Under relatively weak conditions, as k — 400, z*)

tends to be drawn according to 7 ().

4.2. The Gibbs sampler

Suppose that one wants to sample from the following
probability density:

7(z) =7 (215n) (14)
where x1_,, 1s a partition of x

(0)

l—=n

1. Set k = 0 and arbitrarily draw z

2. (a) Draw x(lk+1) according to p (xl /xgk_)m)

(b) Draw xEkH) according to p (x, /xyjil_)LxEﬂ_m)

fore=2,...,n—1.
(C) Draw xﬁf“) according to p (x, /x(llji)_l)
3. Set k=k+1 and go to 2.

Then, under mild conditions on the conditional dens-

(k)

1—n

ities, as k — +oo x will be distributed according to

m(x).

One sees that although the Gibbs sampler is a partic-
ular case of chained MH algorithms, it is - intuitively
- more valuable than a general MH algorithm insofar
as this later algorithm proceeds in two steps which one
could call ”more or less crude proposition” and ”refine-
ment of the proposition” on the contrary of the Gibbs
sampler which makes ”clevered” propositions.



5. Application

5.1. Sampling scheme

In our case, when performing the Gibbs sampler, one
would need to draw from the 5 following densities:

P (tl—w /y1—>"721—>p71n71t’19) (15)
p (QHP /ylan,tlﬁp,zn,zﬂze)
P (za /yl—)nygl_)p7tl—)p71/67zv)

where «, 3,7 are to be taken in {n,¢,8}. Then using the
Bayes rule it yields, noting that o means ”is proportional

to” and § = {tlﬁp’glﬁp’ln’lt’le’ y1—>n}:

ptisp [S\{tiop}) ﬁ(yl—m)P(th/zt)
P, /[S\{8,}) ﬁ(yHn)P(QHp/zg)
P, /S\{2.}) o« plasna/2,)p(3,) (16)

with
L(yisn)=p (yl—m /tl_)P7gl—)P71n71t719) (17)

The choice of this sampling scheme is motivated by the
fact that we group the correlated random variables, in or-
der to improve the rate of convergence of the algorithm.
At this point one could think that applying a simple res-
ampling procedure would be accurate. This would con-
sist for the five cases in drawing according to the prior of
the parameter, and then accept or reject according to the
likelihood of the data conditionaly to the parameters [3].
Nevertheless, for the first two cases, due to the shape of
the likelihood £ and the fact that computers have finite
precision representation of numbers - and thus rounding
small values of the likelihood to zero - new parameters
will be rarely accepted, if ever...

These two steps of the sampling scheme will thus re-
quire the use of a MH algorithm, which allows one to cir-
cumvent this problem. Furthermore, we are in the gen-
eral case confronted with a tradeoff between the speed
of convergence of the algorithm, and numerical limits,
which prevent us from drawing the whole ¢, or ¢,_,,
at a time. In the case when the ¢, or #,_,, are correl-
ated, one notes that:

P(ti—>]/1t,t1—>i—1,t]+1—>p) x p(ti—)]/zt7t1—>i—1)
P(tj+1—>p/1t7t1—>i—1)

which with the help of (5) allows one to sample ¢;_;
conditionaly to other times.

5.2. Simulation

We treat here the simple case when the time ¢,, depends
only on the number of points that occured in the past. It
18 a zero memory self-excited point process. The priors
we take are as follows:

AMu/Nw), T) = N({(N@+1)T, o)
T ~ UO,M) (18)
8 ~ N (mg,o00)
ng ~ N(0,04) (19)

The noise is assumed to be white, and the shape to be a
decaying exponential.
The priors on the parameters are taken to be

mg ~ U0, M)
0o ~ ]nU—X2(U,u) (20)

so that

P(oa [S\{7a}) = Tno = x* (04 0o, “EEE2T) o)

U4+ ng
where
= UN ()
T = - (i — ma)
=1
We have taken the following values: T = 30.0,0¢ =
5.0,my = 1.0,04 = .1,v = 2 (this ensures infinite vari-

ance for the prior) p = .3. We took the following real-
ization of the process, giving the 14 following values for
the 7 impulses:

Time 35.8 63.1 90.4 121.7 146.5 188.4 210.3
Amp. 1.17 1.02 1.08 .855 929 1.12 .93

We then performed the algorithm for o, = .3. We
present the estimates of several conditional densities of
the parameters. Due to the lack of space, we only give
the conditional expectations of the times and amplitudes.
Finaly we give the burn-in period of the estimates of the
chains for the times, for ¢, = .3 and o, = .4: the al-
gorithm converges very fast in the first case and requires
more iterations in the second case. One also notices
that the variance naturally increases. The results are
quite good insofar as we estimate all the parameters and
the SN R 1s low. Of course excellent results have been
obtained when we have performed the algorithm with
o, =.1land o, = .2.

Time 36.4 63.5 90.5 1239 148.6 188.5 210.3
Amp. .88 .92 .85 .55 77 1.12 .76

Observation for SNR=-1.3 dB
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Figure 1: Observations at —1.3dB
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Figure 3: Estimation of p (¢ /y15n ) o AL o e
Figure 5: Estimation of p (Uﬂ/yl_m)

6. Conclusion

We present here an application of a modelization of a
large class of filtered point processes to cyclostationary

processes which may be very useful in many applica-

tions. One of the advantage of the modelization is that it

uses all the prior information which is often in practice

available, but would be ignored using only correlation

properties. Indeed when highly time disturbed we have

shown that such process may be weakly cyclostationary. m—— ]

In order to estimate the parameters of the given model,
we propose an original stochastic algorithm, based on Figure 6: Estimation of p (o /y15n)
MCMC, which have not become yet popular in the signal

processing community, despite their numerous applica-

tions. Furthermore, such an approach could be extended 20000 e vt/ Sn-2. am

to the deconvolution of superimposed filtered point pro-
cesses, and the case of the unknown a priori number of

. . . | fuaand Lty
impulses will be treated in a later paper. B I R
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