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ABSTRACT

This work addresses the problem of generalized mul�
tisensor Hidden Markov Chain estimation with appli�
cation to unsupervised restoration� A Hidden Markov
Chain is said to be �generalized� when the exact nature
of the noise components is not known� we assume how�
ever� that each of them belongs to a �nite known set of
families of distributions� The observed process is a mix�
ture of distributions and the problem of estimating such
a �generalized� mixture thus contains a supplementary
di�culty	 one has to label� for each state and each sen�
sor� the exact nature of the corresponding distribution�
In this work we propose a general procedure with ap�
plication to estimating generalized multisensor Hidden
Markov Chains�
Key words � multisensor data� generalized mixture es�
timation� Hidden Markov Chains� Bayesian restoration�
unsupervised restoration�

� INTRODUCTION

Hidden Markov Chains are well known as an e�cient
tool for treating numerous concrete problems� Such
models have been successfully applied to speech process�
ing problems 
��� script recognition problems� image pro�
cessing problems 
� and others� In a more general man�
ner� one can envisage the use of theses models once the
problem is to estimate some discrete phenomenon from
the observed �noisy�� i�e�� continuous phenomenon� The
noise is generally modelled as a realization of a Gaus�
sian random variable� The unsupervised restoration of
Hidden Markov Chains has been studied in the Gaus�
sian case in 
�� which is the origin of the present work�
Nevertheless the Gaussian model can be unsuited to de�
scribe reality and one has to consider the use of other
noise types� moreover� it is desirable to be able to �nd
automatically the right nature of the noise for each class
and each sensor� Such generalized mixtures have been
previously studied assuming that the components lie in
the Pearson system� An adaptation of the classical SEM
algorithm 
�� can be used to estimate such mixtures 
���
This work lies within the scope of this general problem�
The organization of the paper is as follows	

In the next section we adress the generalized mixture es�
timation problem in a general setting and present ICE

�� and tests based methods of its estimation� The third
section is devoted to the Hidden Markov Chain model�
In section � we present a particular method for General�
ized Hidden Markov Chain model estimation� based on
the Kolmogorov Smirnov test� Section � is devoted to
unsupervised restoration and presents some results�

� GENERALIZED MIXTURE ESTIMATION

Let us consider a �nite set S and random variables
�X�Y � � ��Xs�s�S � �Ys�s�S�� X � �Xs�S� is the class
random process	 thus each Xs takes its values in a ��
nite set of classes � � f��� � � � � �kg� Y � �Ys�S� is
the observed process and each Ys takes its values in
IRm� where m is the number of sensors� thus Ys �

�Y �
s � � � � � Y

m
s �� The distribution of X depends on a pa�

rameter � and is denoted by ��� The random variables
Y �
s � � � � � Y

m
s are independent conditionally on X and all

distributions of Y conditional on X are given by k dis�
tributions of Ys conditional on Xs � ��� � � � � �k� respec�
tively� The latter distributions are given by densities
f�� � � � � fk with respect to the Lebesgue measure� The
problem of mixture estimation is to �nd � and f�� � � � � fk
from Y � y� In the �classical� mixture case the general
form of fi is known and these densities depend on a
parameter � which has to be estimated from Y � y�
For instance� if each fi is Gaussian� � contains k � m
means and k�m variances� In the �generalized� mixture
case the general form of densities is not known exactly�
However� the form of each fi is in a given �nite set of
forms� Let � � fF�� � � � � FMg be a set of families of
distributions� Thus each fi belongs to one of the fam�
ilies F�� � � � � FM and we do not know which one it is�
The problem of �nding the densities is then two�fold	
for each fi� �nd the family Fl to which fi belongs and
�nd the parameter which �xes fi in Fl� We propose a
general algorithm called ICE�TEST based on the ICE
algorithm �
���� which in fact comprises a family of gen�
eralized mixture estimation methods� We assume the
following	



�H� One disposes of an estimator �� � ���X� of � from
X�

�H�� It is possible to simulate realizations of X accord�
ing to its distribution conditional on Y �

�H�� Each family Fl of � is parametrized with a pa�
rameter �l�

�H�� One disposes of M estimators ���� � � � � ��M such that
if a sample z � �z�� � � � � zr� is produced by a distribution

f�j in Fj � then ��j � ��j�z� estimates �j �

�H�� One disposes of a test which� given any distribu�
tion density fj � checks the hypothesis �f � fj� against
the hypothesis �f �� fj��

For the multisensor case we add the following	
�H�� Y �

s � � � � � Y
m
s are independent conditionally on Xs�

Thus each density fi on IRm is given by m densities
f�i � � � � � f

m
i on IR and fi � f�i � � � �� fmi

The ICE�TEST algorithm is an iterative method	 at
step q� let �q and fq� � � � � � f

q
k be current prior parame�

ters and current densities� The updating is	

� Simulate xq� a realization of X� according to its �q

and fq� � � � � � f
q

k based distribution conditionnal to
Y � y�

�� Calculate �q�� � Eq
���X� j Y � y�� where Eq
 � j
Y � y� is �q and fq� � � � � � f

q

k based conditional ex�
pectation� If this calculation is impossible� calcu�
late �q�� � ���xq�

�� for i � � � � � � k consider Si � fs � S j xqs � �ig�
Let yqi � �ys�s�Si � �y�s � � � � � y

m
s �s�Si and yq�ri �

�yrs�s�Si � For each sensor r � � � � � �m and each
class i � � � � � � k calculate M parameters ���ri �
����yq�ri �� � � � � �M�r

i � ��M �yq�ri ��

�� for r � � � � � �m and i � � � � � � k� consider that
yq�ri � �yrs�s�Si is issued from a density f and per�
form M tests �for j � � � � � � k� �f � f

�
j

i

� against

the hypothesis �f �� f
�
j

i

�� Take �r�q��i as the �rst

parameter giving the positive answer to the test�

�� For each class i � � � � � � k take fq��i �
f
�
��q��

�

� � � ��f
�
M�q��

k

� and update �f�� � � � � fk� with

�fq��� � � � � � fq��k ��

We call our method ICE�TEST because it can be seen as
a generalization of ICE� The latter method is a general
method of estimation in case of hidden data� including
classical mixture estimation�

� HIDDEN MARKOV CHAINS

This section is devoted to a brief review of the Hidden
Markov Chain model� We describe it in the mono�sensor

case� the generalization to the multisensor case is imme�
diate when the observations for a given class in di�erent
sensors are independent� by replacing in all formulas
fi�ys� by fi�y

�
s � � � � � y

m
s � � f�i �y�s �� � � �� fmi �yms ��

A sequence of random variables X � �Xn�n�N taking
their values in � � f��� � � � � �kg is a Markov random
chain if it veri�es for every n � 	

P �Xn�� � �in�� j Xn � �in � � �X� � �i�� �

P �Xn�� � �in�� j Xn � �in� ��

Then the distribution of X � �Xn�n�N is given by the
distribution of X�� called the initial distribution� and a
sequence of transition matrices aij � P �Xn�� � �j j
Xn � �i�� In what follows we will assume that

cij � P �Xn � �i� Xn�� � �j� ���

does not depend on n� Thus the initial distribution is
given by

�i � P �X� � �i� �
kX

j��

cij ���

and we have just one transition matrix A � 
aij�� with

aij �
cij
kX

j��

cij

���

Following the general hypotheses of Section �� we will
assume that the random variables Y � �Ys�s�S are inde�
pendent conditionally on X and that the distribution of
each Ys conditional on X is equal to its distribution con�
ditional on Xs� We still denote by f�� � � � � fk the distri�
bution densities of Ys conditional on Xs � ��� � � � � Xs �
�k� respectively� We denote by x � �x�� � � � � xn� and
y � �y�� � � � � yn� the realizations of X and Y � respec�
tively�
Let us consider the Forward�Backward probabilities
which will be used in estimation and restoration stages	

Ft��i� � P 
Xt � �i� Y� � y�� � � � � Yt � yt�

Bt��i� � P 
Yt�� � yt��� � � � � Yn � yn j Xt � �i�

F���j� � N��jfj�y��

Ft��j� � Nt

�
kX
i��

Ft����i�aij

�
fj�yt� for t � 

���
Bn��i� � 

Bt��i� � Nt��

kX
i��

aijBt����i�fj�yt��� for t � n

���
Here Nt is a normalizing constant 	

Nt �

�
� kX

j��

Ft��j�

�
A
��



� ESTIMATION OF GENERALIZED HID�

DEN MARKOV CHAINS

A Hidden Markov Chain is a type of general model de�
scribed in section �� Assuming �H��� we show in this
section that the hypotheses �H���H�� assumed in sec�
tion � are also veri�ed and then we develop the formulas
adapted to the model�

� The parameter � is here ci�j� which can be esti�
mated by

�ci�j �

n��X
t��

�Xt��i�Xt����j �

n� 
���

Thus �H� is veri�ed�

�� The distribution of X � �X�� � � � � Xn� conditional
to Y � y� where n is �nite and �xed� is a distribu�
tion of a nonstationary Markov chain� The initial
distribution and the transition matrix at time t are
given by

�ti �


n

nX
t��

kX
j��

	t�i� j� ���

atij �

n��X
t��

	t�i� j�

n��X
t��

kX
j��

	t�i� j�

���

where 	t is de�ned with ��� and ���	

	t�i� j� �
P �Xt � �i� Xt�� � �j� Y � y�

P �Y � y�

�
Ft��i�aijfj�yt���Bt����j�
kX
l��

fl�yt���
kX

j��

Ft��j�ajl

���

Thus simulations are possible� �H�� is veri�ed�

�� There are numerous families verifying �H��� As an
example let us consider � � fN�I�IIIg� we discribe
below these densities and their parameter estima�
tions	
� type N	 distribution N �m�
��

f�x� �
p
��


exp

�
�x�m��

�
�

�
x � IR

m � �� 
� � ��

� type I	 distribution B�p� q� a�� a��� x � 
a� a���
p� q � �

f�x� �
��p� q�

��p���q�

�x� a��p���a� � x�q��

�a� � a��p�q��

p� q �


�
r

�
� �r � ��

r
��

�r � ����� � � �r � �

�
p � q if �� � � otherwise q � p

r �
� ��� � �� � �

�� � ��� � ����

� � a� � a� �


�

p
��

q
�r � ��� �� � � �r � �

a� � �� ��
p

p� q

� type III	 distribution ��p� q� a��� x � a�� p� q � �

f�x� �


��p� qp
�x� a��

p�� exp

�
�a� � x�

q

�

p �
� ���
���

q �
��
���

a� � �� � ����
��

Where ��� ��� ��� �	 are the �rst four moments�

�� �
���
���

and �� �
�	
���

�

�� To estimate the �rst four moments� one can use
empirical moments

��i�X�Y � �

nX
t��

yt�Xt��i �

nX
t��

�Xt��i�

��

��i�p�X�Y � �

nX
j��

�yj � ��i�
p�Xj��i�

nX
j��

�Xj��i�

p �  ���

�H�� is veri�ed�

�� We propose the use of the Kolmogorov�Smirnov test
and accordingly call this algorithm the ICE�KOLM
algorithm� The test runs as follows 	
Let y � �y�� � � � � yn� be a sample issued from a den�
sity f � Let

�Gn�t� �


n

nX
t��

��� yi��t�

the empirical distribution function� Gj the distri�
bution function associated with the distribution
Pj �represented by a density fj� and set Kn �

sup
x

��� �Gn�x� � Gj�x�
���� For a given  � �� let

W � fy � IRn �Kn�y� � cg where c is de�ned by
Pj�W � �  �for an � c is given by Kolmogorov s
table�� The hypothesis �f � fj� is then accepted if
y � W � and rejected otherwise�

�H�� is veri�ed�



� UNSUPERVISED RESTORATION OF

MARKOV CHAINS

��� Restoration

At the end of the estimation stage� the prior distribu�
tion and conditional distributions have been calculated�
so we can perform the restoration� We have chosen the
MPM algorithm which maximizes the marginal poste�
rior probability	

Xt � �j � P �Xt � �j j Y� � y� � � �Yn � yn� �

max
i�f����kg

P �Xt � �i j Y� � y� � � �Yn � yn� �

max
i�f����kg

Ft��i�Bt��i� ���

The unsupervised restoration runs as follows	

	 Estimate ��i� aij� fi�

	 For each s � � � � � � n	

	 Calculate Fi� Bi using ��� and ����

	 Classify Xs � �i where �i maximizes the pos�
terior probability according to ����

��� Numerical results

Let us consider two Markov Chains with two classes�
chain A and chain B of di�erent homogeneity� Some
previous numerical results show that the homogeneity
of the class can have a strong in!uence on the behavior
of estimation and restoration stages�
� Chain A homogeneous� The transition matrix and
initial distribution are	

A �

�
���� ����
���� ����

�
� � ���� � ����

� Chain B non homogeneous� The transition matrix and
initial distribution are	

A �

�
��� ���
��� ���

�
� � ���� � ����

The sensor  is corrupted with ���� �� ��� and
N�������� and the sensor � is corrupted with
���� �� ��� and B������������ We compare the ICE�
KOLM algorithm with the classical one called ICE�
GAUS which assumes that all densities are Gaussian�
Results of estimation and kind of distribution detected
are presented in table � The classi�cation error rates
after restoration are presented in table ��
In view of the results presented in table � we observe
that ICE�KOLM �nds the correct distributions for chain
A� In case of chain B� ICE�KOLM fails to detect the Beta
distribution in sensor �� The good estimation of the
parameters improves the e�ciency of the unsupervised
Gaussian MPM restoration �see table ��� Moreover� the
error rates of the MPM based on the ICE�KOLM es�
timates are very close to the error rates of the MPM
based on the true parameters�

Chain A Sensor  Sensor �

Real ���� �� ��� ���� �� ���
distribution N�������� B�����������

ICE�GAUS N�������� N��������
N�������� N��������

ICE�KOLM ���� �� �� ��� ���� �� �� ���
N�������� B���������������

Chain B Sensor  Sensor �

Real ���� �� ��� ���� �� ���
distribution N�������� B�����������

ICE�GAUS N������� N������
N�������� N�������

ICE�KOLM ���� �� � ��� ���� �� �� ��
N������� N��������

Table 	 � sensor generalized mixture estimation

Chain A Chain B

Real distribution ����" ���"

ICE�GAUS ���" ��"

ICE�KOLM ���" ���"

Table �	 Error rates after restoration

References


� Benmiloud�B et Pieczynski�W� Estimation des
param#etres dans les cha�$nes de Markov cach%ees
et segmentation d images� Traitement du Signal�
����	���&���� ����


�� Celeux�G et Diebolt�J� L algorithme SEM 	 Un al�
gorithme d apprentissage probabiliste pour la recon�
naissance de m%elanges de densit%es� Revue de Statis�

tique Appliqu�ee� XXXIV���� ����


�� Delignon�Y� Quelle�HC� and Marzouki�A� Unsuper�
vised Bayesian segmentation of SAR images using
the Pearson system� Proceedings of IGARSS���

Tokyo� pages ���&���� ����


�� Pieczynski�W� Champs de Markov cach%es et Estima�
tion Conditionnelle It%erative� Traitement du Signal�
���	�&��� ����


�� Rabiner�L�R� Levinson�S�E and Sondhi�M�M� On the
use of hidden Markov model for speaker independant
recognition of isolated words from a medium size vo�
cabulary� Bell systemTechnical Journal� april ����


