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ABSTRACT

The estimation of time-delay and time-scaling is
required in many signal processing applications. A
parabolic approximation was recently suggested for
fine estimation of time delay from sampled signals.
The method directly extends to scaling estimation by
a parallel multi-rate sampling of the analog received
signal. Such rescaling can be implemented by digital
techniques and two efficient algorithms are here
devised and analysed.

1. INTRODUCTION

Time delay and Doppler shift estimation is
an important issue in many signal processing areas
[1-2]. These include the direction of arrival and
trajectory in underwater acoustics, sonar and radar
range and speed estimation in a multisensor
environment, mobile communications, inter-satellite
communications, timing acquisition in a spread
spectrum communication system, motion detection
and compensation in moving images, stereo vision,
etc..

A model for Doppler-shifted narrow-band
signals consists of a frequency shift of the spectrum
[3]. This simple model does not apply in the
presence of wide-band signals, where Doppler effect
acts as an instantaneous compression or expansion
of the time scale (or, for duality, an expansion or
compression of the frequency scale).

Minimization of the ambiguity function
based on generalized cross-correlation allows to find
a Maximum Likelihood (ML) optimal estimate of
the unknown parameters [1]. Efficient estimation
methods are based on a sequential algorithm [4]: a
coarse estimate is obtained from an unambiguous
smoothed ambiguity function; a fine estimate then
works on a wide-band ambiguity function starting
from the coarse estimate. This allows to estimate the
absolute minimum of the ambiguity function
avoiding the wrong convergence on a relative one. In

a recent paper [5], a parabolic approximation was
employed for fine (sub-sample) estimation of time
delay from sampled signals. The method was
extended in [6] to Doppler estimation by a parallel
multi-rate sampling of the analog received signal. In
this work, such a Doppler multi-compensation is
conversely implemented by digital techniques and
two fast algorithms are here devised and analysed.

2. SIGNAL MODEL

One preliminary question arises, namely
whether it is possible to separate the estimation
procedures of time delay and Doppler shift. The
answer provided by the theory is that one may use
two separate estimators if the relative estimation
errors are not correlated. In fact, this fact actually
depends on the particular model chosen to represent a
Doppler-shifted signal. As a consequence, we have
employed a model [7] for which the above condition
applies.

We assume to know the reference signal
x(t) and a given number of delayed and Doppler-
shifted versions y(t;di,fj) of the received signal r(t)
for a given observation time window, i.e.:

x(t) = s(t) + n1(t)

r(t) = a s ( )t - D
1 + F

+ n2 (t) (1)

y(t;di,fj) = r[(1+fj)t+di]

where s(t) is the information signal while n1(t) and
n2(t) are uncorrelated additive noises. In eq. (1), D
and F are the unknown time delay and the Doppler
velocity, respectively, to be estimated.

3. THE ESTIMATION PROCEDURE

3.1. Using a discrete ambiguity function



The received sampled signal has to be
processed to obtain a set of time-shifted and time-
scaled versions of the same signal in order to
evaluate a two-dimensional ambiguity function,
quantized on a proper grid both in time and Doppler
domains. The resolution of the quantization grid
basically depends on the observation time window.

Let us define A(di,fj) as the estimated
ambiguity function over a set of discrete values of
time delays (di) and Doppler shifts (fj). The coarse
estimate is implemented by searching for its
minimum value, say A(dI,fJ). In order to find a fine
(sub-sample) estimate of (D,F), we interpolate A(d,f)
around A(dI,fJ) by a local two-dimensional Taylor
expansion, after retaining the only terms up to the
second order. Since the estimation errors are not
correlated for the assumed model, such interpolation
reduces to two separable one-dimensional ones.

In other words, two distinct parabolic
interpolations, based on other four measurements
A(di,fj) placed at the vertices of a cross around
A(dI,fJ), need to estimate the time delay and the
Doppler shift:

d = dI -
∆ d
2

•

•
A(dI+∆ d, fJ ) - A(dI-∆ d, fJ )

A(dI+∆ d, fJ ) -2 A(dI , fJ ) + A(dI-∆ d, fJ )
(2)

f = fJ -
∆ f
2

•

•
A(dI , fJ+∆ f ) - A(dI , fJ-∆ f )

A(dI , fJ+∆ f ) -2 A(dI , fJ ) + A(dI , fJ-∆ f )
(3)

where Dd and Df are the resolution quanta of the
time delay and the Doppler coefficients.

3.2. Doppler-compensation and correlation

For our purposes, at least three
measurements of the Doppler-shifted signal are
needed, other than the reference one. The actual
Doppler must belong to an interval determined by
the lowest and the highest values.

As we are usually dealing with band-limited
signals, discrete-time tecniques can be employed.
The Doppler-compensation can be directly
implemented as suggested by eq. (1) by collecting a
parallel grid of samplers, tuned at several rates, i.e.:

y
mr

(kT;di,fj) = r[k(1+fj)T+di]     (4)

Such a multi-rate method (discussed also in [6]) is
equivalent to sample the ambiguity function in the
Doppler domain.

The presence of a large observation window
for an effective speed estimation suggests the use of
fast digital algorithms to collect the whole set. For
this purpose, the input samples ideally need an
infinite-length time-varying interpolation to obtain
the Doppler-shifted signal samples.

Because of its complexity, such
computation can be approximated by a zero-order or
a first-order time-varying interpolator, i.e.:

y
0
(kT;di,fj) = r{nint[k(1+fj)]T+di}     (5)

y
1
(kT;di,fj) = {1-k(1+fj)+int[k(1+fj)]} •

• r{int[k(1+fj)]T+di} + {k(1+fj)-int[k(1+fj)]} •

• r{int[k(1+fj)+1]T+di}     (6)

where int(•) is the lower integer value of the real
argument and nint(•) denotes the nearest integer one.

In practice, the interpolator (5) consists of
deleting (or doubling) one sample from time to time;
this is equivalent to discretizing in the Doppler
domain the analog Betz method [8]. The function (6)
just performs a linear interpolation whose
coefficients depend on the current time.

4. NUMERICAL RESULTS

The results have been obtained for random
Gaussian signals  with a Gaussian-shaped auto-
correlation function, i.e.:

R ss(τ) = e
- τ 2

2 σ2 (7)

corrupted by two uncorrelated Gaussian white noises
with several Signal-to-Noise Ratios (SNRs).

The direct, ASDF, and AMDF discrete-time
correlators, respectively defined as [5]:

Adirect (d i ,f j ) =
1
N

N

∑
k=1

x(kT) y(kT; di ,f j ) (8)

AASDF (di ,f j ) =
1
N

N

∑
k=1

[ x(kT) -
1
a y(kT; di ,f j )]

2
(9)



AAMDF

1/2
(d i ,f j ) =

1
N

N

∑
k=1

| x(kT) -
1
a y(kT; di ,f j )| (10)

have been used for estimating the sampled ambiguity
function A(di,fj). The correlators (8)-(10) work on
the sampled reference signal x(kT) and the samples
of a perfectly Doppler-compensated received signal
y

mr
(kT;di,fj), or the approximated ones y

0
(kT;di,fj)

or y
1
(kT;di,fj) defined in eqs. (4)-(6).

The practical example considered here refers
(just like in [2]) to an underwater object moving
with a radial speed of 7 knots (corresponding to a
time scaling factor on the order of F=2.4 10-3) and
uses an observation window of 0.1 sec to obtain the
timing and Doppler estimates. A unitary gain factor
(a=1) has been here considered for sake of simplicity.
The central sampling time is T=5 10-5 sec, while
the autocorrelation standard deviation in eq. (7) has
been assumed s=T. The quantized grid resolution is
one sampling period for the timing and 2 knots for
the speed.

The time delay error is usually much less
relevant than the Doppler error. In practice [2], 30-60
Nyquist samples are enough for a good estimation of
time delay, while at least 2000 samples need to be
employed to achieve a comparable performance for
the Doppler shift.

As a consequence, working on the largest
window, we are focusing on the estimation of the
Doppler coefficient. The performed simulated
analysis therefore refers to the case of a perfect
sampling of time-delay (which can be well
estimated) and an intermediate wrong sampling of
the speed (namely, a central speed of 7±0.5 knots
with 2 knots of resolution quantum).

In practice, a systematical error affects all
the estimates, but such bias results strongly
dependent on the signal autocorrelation [5]; as a
consequence, it can be neglected if the statistical
properties of the signals are known.

The variances of the speed estimator (3)
using the three analysed interpolators (4)-(6) have
been evaluated by 1000 independent runs of
computer simulations and are reported in the figs. 1-
3 versus the SNR in the range [0,30] dB. In
particular, the three figures respectively refer to the
three discrete-time correlators (8)-(10).

As expected, the analogically-compensated
multi-rate estimator (4) shows the best accuracy for
all the correlators employed here. Nevertheless, the
linear interpolator (6) has near efficient performance

for intermediate values of SNR (10-20 dB), but it
becomes poorer than a zero-order interpolator (5) for
low SNR values (5 dB or less).

5. CONCLUSION

Digital methods based on fast time-scaling
of signals and discrete-time correlation have been
devised for the simultaneous estimation of time-
delay and Doppler speed. Their performance has been
investigated by computer simulations for some
typical values of the parameters. Their accuracy has
been shown as a function of the actual SNR value,
and finally matched to the reference one of an ideally
Doppler-compensated estimator.
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Fig. 1. Variance of the speed (F= 2.4 10-3) estimator based on multi-rate,
 0th-order, and 1st-order interpolators versus SNR, employing the direct
 discrete-time correlator, in the case of a perfect sampling of time-delay
and an intermediate wrong sampling of speed.
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Fig. 2. Variance of the speed (F= 2.4 10-3) estimator based on multi-rate, 0th-order,
and 1st-order interpolators versus SNR, employing the ASDF discrete-time correlator,
 in the case of a perfect sampling of time-delay and an intermediate wrong sampling of speed.
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Fig. 3. Variance of the speed (F= 2.4 10-3) estimator based on multi-rate,
 0th-order, and 1st-order interpolators versus SNR, employing the AMDF discrete-time correlator,
 in the case of a perfect sampling of time-delay and an intermediate wrong sampling of speed.


