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ABSTRACT
In many applications, very fast methods are required for
estimating and measurement of parameters of harmonic
signals distorted by noise. This follows from the fact that
signals have often time varying amplitudes. Most of the
known digital algorithms are not fully parallel, so that the
speed of processing is quite limited. In this paper we
propose new parallel algorithms, which can be implemented
by analogue adaptive circuits employing some neural
network principles. The problem of estimation is formulated
as an optimization problem and solved by using the gradient
descent method. Algorithms based on the least-squares
(LS), the total least-squares (TLS) and the robust TLS
criteria are developed and compared. The networks process
samples of observed noisy signals and give as a solution the
desired parameters of signal components. Extensive
computer simulations confirm the validity and performance
of the proposed  algorithm.

1 INTRODUCTION

Estimation of parameters (amplitudes) of harmonic signals
is important in electric power systems and power electronics
due to increasing use of nonlinear dynamic loads. The
harmonics produced have usually varying amplitudes due to
dynamic nature of  nonlinear loads. Fast estimation of the
parameters is essential for the control and protection of
electric power systems. It is also useful in modelling,
measurements and compensation of higher harmonics.
Various digital and analogue (neural networks) algorithms
have been proposed for the estimation of parameters of
harmonic signals. They range from simple least-squares
(LS) methods [1, 3], least absolute value (LAV) technique
[2, 3], Lp-norm criteria [4], minimax (Chebyshev norm)
technique [2, 3, 4, 5], methods based on the singular value
decomposition (SVD) [6], DFT [7, 8], to the Kalman
filtering approach [7].

The purpose of this paper is to present novel on-line
techniques for estimation of parameters of harmonics based
on the least-squares (LS), total least-squares (TLS) and the
robust TLS criteria. The corresponding architectures of
analogue neuron-like adaptive processors are also shown.
The developed methods are more robust against random
noise in comparison with other known algorithms.

2 MATHEMATICAL FORMULATION OF
THE PROBLEM

We analyse and  solve the following standard problem.

Let y(t) denote measured noisy signal
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where
ω π= 2 f  is a known or rather approximately estimated 

angular frequency,
r(t) is unknown noise or error (residual),
a bi i, are unknown amplitudes of harmonic signals.

On basis of values y(t) it is necessary to find or estimate in
real time the amplitudes a bi i, . Assuming that a

continuous-time signal y(t) is sampled and hold with a
sampling interval T, the problem can be mathematically
reformulated as the problem of solving a large
overdetermined system of linear equations
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3 LEAST  SQUARES  APPROACH

The above formulated problem can be solved using standard
LS approach. According to this approach we minimize the
energy (objective) function defined as

E T
2

1
2 2

2 1
2( )x e e e= = (3)

where

[ ]e Dx y = d d d x - y= − 1 2 2, , . . . , n

In this case the estimated vector x will be given by

[ ]x D D D y=
−T T1

(4)

The formula (4) requires to compute inverse matrix and it is
rather very time consuming. In order to find the LS
estimates in real time we can employ the Hopfield type



neural networks [9, 10]. According to this approach we
need to solve (simulate) the system of differential equations

d

dt
T Tx
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where
µ > 0  is the appropriate learning rate.

The matrix differential equation (5) can be written in a
scalar form as
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The LS technique is relatively simple. However the
approach is optimal only if matrix D is exactly known and
the vector y is perturbated by a Gaussian noise. It provides
rather poor estimation  if noise has impulsive character, i.e.
if the data have large errors called outliers.

4 TOTAL  LEAST  SQUARES  APPROACH

The standard LS method assumes that the matrix D is
exactly determined and only the vector y is contaminated by
noise. In practice the matrix D is also perturbated by error.
In fact, the frequency ω  is not exactly known. Moreover, it
can be slightly fluctuated during the measurement, and these
fluctuations are unknown. Furthermore, the sampling period
is sometimes not fixed but also fluctuates (i.e. the sampling
of the signal is not ideally regular). For these reasons, in
order to obtain more reliable and robust solution we apply
the total least squares (TLS) approach, known in the
statistics literature as orthogonal regression and errors-in-
variable regression. The TLS criterion assumes errors both
in the matrix D and in the vector y. Therefore, whereas LS
minimizes the prediction error, TLS minimizes the error
normal to the graph of the linear predictor. Applying the
TLS criterion we obtain the following linear matrix
equation

( � ) �D R x y r+ = +TLS (8)

where

D D R= +�  and  y y r= +�
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matrices,

R r∈ ∈×R Rm n m,  are corresponding errors.

In other words, the TLS problem can be formulated as the

optimization problem: to find the vector x TLS
∗  that

minimizes
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subject to the equality constraints (8), where R F  denotes

the Frobenius norm of  R. The main numerical tool for
solving the TLS problem is the singular value
decomposition (SVD) of the extended matrix [11]
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The TLS solution is computed as
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singular vector associated to the smallest singular value
σn+1  of the extended matrix [D, y]. As the singular value

σn+1  goes to zero, the LS and TLS approaches to each

other. It is important to point out that the LS solution is
based on the minimization of the sum of the squared errors

e = Dx - y   (12)

while the TLS solution is based on the minimization the
sum of weighted squared errors [11]. In other words, the
TLS problem can be formulated as the minimization of the
energy function
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In comparison with the standard LS technique obtaining the
solution of the TLS problem is generally quite burdensome
and very time consuming. This probably because the TLS
approach has not been as widely used as the usual LS
approach, although the TLS approach has been investigated
in robust statistics long ago.

In order to simplify complexity of the algorithm we
introduce an instantaneous error defined as
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where

[ ]S( ) ( ), ( ), ..., ( ),t S t S t S tm
T= 1 2  is the vector of

zero-mean independent identically distributed (i.i.d.)
externally excitation signals (e.g. zero-mean noise sources),
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The TLS problem can be now reformulated as minimization
of the following instantaneous energy function
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Applying the gradient descent approach we obtain the
system of differential equations
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where
µ( )t > 0 .

The above set of differential equations can be further
simplified, after linearization, as
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Functional block diagram illustrating implementation of the
algorithm (19) is shown in the Fig. 1. The  block   diagram

can be considered as a single neuron with synapses x j ,

learned (adjusted) according to eqn. (19).

5 ROBUST  TLS  ALGORITHM  (RTLS)

In practice, the errors are more or less isotropically -
contrary to the assumptions. The TLS algorithm is rather
very sensitive to noise and kind of distributed errors,
especially in the presence of outliers.

This extreme sensitivity implies that we need to modify
or generalize TLS algorithm in order to eliminate, as far as
possible, outlying points or large spiky noise. This fact was
main motivation for development and investigation of a new
generalized algorithm called Robust Total Least Squares
(RTLS) algorithm.
The learning algorithm (19) can be extended as follows:
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where

Ψ( )e  is nonlinear activation function enabling supress
or neglecting large error, e.g. Ψ( ) tanh( )e e= γ  or
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and α ≥ 0  is nonnegative coefficient.
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Fig. 1. a) Analog neural network for solving the estimation problem (see Eq.(20)); b) Exemplary method for generation signals S



In the special case Ψ( )e e≡  and  α = 0  we obtain
standard LS algorithm and for Ψ( )e e≡  and  α = 1 obtain
standard TLS algorithm. It should be noted, that by
changing the value of the parameter α  more or less
emphasis can be given to errors of the matrix D with respect
to errors of the vector y . If  α = 0 , we assume that error is
only in the vector y. On the other hand, for large α  (say
100) it can be assumed that the vector y is almost free of
error and the all error lies in the data matrix D. Such
extreme case is refferred to as so called DLS (data least
squares) problem (since error occurs only in D but not in y).
The RTLS algorithm (20) could be transformed to time-
discrete form as

xj k xj k k e k dj k y k xj k( ) ( ) ( ) [ ( )][
~

( ) ~( ) ( )]+ = − +1 η αΨ   (21)

6 SIMULATION  EXPERIMENTS

Extensive computer simulation experiments have confirmed
the validity and performance of the proposed algorithms.
The associated network has been simulated on computer.
Owing to limited space, we shall present only some
illustrative results. First, we have simulated a signal

x t t t r t( ) sin( ) cos( ) ( )= + +100 100ω ω   (22)
The algorithm has been investigated for the frequency of the
basic component equal to 50 Hz. The investigations have
been done, when the frequency of the simulated signal
changes. The sampling window was T = 0.02 and T = 0.04s.
The number of samples N = 20 - 100. When the frequency
of the simulated signal 49,5 Hz the estimation errors were
less 1%. Slightly better results we have obtained using the
TLS and the RTLS method. We have applied the learning
rate µ = 1000 . We have also investigated the influence of

the random noise in the measured (simulated) signal on the
estimation error. The LS, the TLS and especially the RTLS
methods show a great immunity against the noise. For the
noise level up to 10% the estimation errors were less than
1%.

In all the investigations the level of the auxiliary noise
S tn ( ) was about 1% of the amplitudes of the simulated

signal.
When using the LS algorithm the trajectories of the

estimated parameter converge in less than 5 ms, and for
TLS or RTLS algorithm in less than 2 ms.

CONCLUSIONS

Adaptive analogue neural networks represent a very
promising approach for high-speed estimation of parameters
of signals. In this paper new algorithms and architectures of
neuron-like adaptive circuits have been developed,
according to the LS, TLS and RTLS optimization criteria,
applying the gradient descent approach. They are more
robust against noise in the measured signal than other
known neural network algorithms. The network based on
the TLS and RTLS criteria optimize the estimation under
the assumption, that the signal model can be also
perturbated (frequency or sampling interval fluctuation and
so forth). The robust TLS estimates are usually better and
more reliable than the corresponding LS estimates. While

the TLS and RTLS estimates do have a bias this seems to be
dependent relatively weakly on the noise level.

The important conclusion we draw here is that the RTLS
estimation may be useful when large amounts of errors and
noise occur. The RTLS algorithm is generalization of well
known LMS rule and could be in some applications superior
to family of LMS algorithms.

Extensive computer simulation experiments confirmed
the validity and performance of the proposed algorithms.
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