
ABSTRACT

The corrected least squares (CLS) approach using an over-
determined model is investigated to decide the number of
sinusoids in additive white noise. Like the total least squares
(TLS) approach, the CLS estimation is different from the
ordinary least squares (LS) method in that the noise variance
is subtracted from the diagonal elements of the correlation
matrix of the noisy observed data. Therefore the inversion of
the resultant matrix becomes ill-conditioned and then adequate
truncation of the eigenvalue decomposition (EVD) should be
done. This paper clarifies how to simultaneously estimate the
noise variance and truncate the eigenvalues, since they are
mutually dependent. By introducing a multiple number of
regularization parameters and determining them to minimize
the MSE of the model parameters, we can give an optimal
scheme for the truncation of eigenvalues. Furthermore, an
iterative algorithm using only observed data is also clarified.

1. INTRODUCTION

The eigenstructure approach is a powerful tool in high-
resolution spectral analysis in low SNR cases. Application of
the singular value decomposition (SVD) on the noisy observed
data matrix is a low rank approximation for it in the sense of
the LS estimate with the rank equal to the number of sinusoids
[1]. The TLS approach is one of refinements of the LS method
when there are observation noises in both the data matrix and
observed signal vector [2][3]. However, when an overdeter-
mined model is used, the number of sinusoids should be
known a priori to obtain an estimate of the spectrum or
frequencies of signals.

In this paper, we take the CLS and TLS approaches using
an overdetermined model [4], which are different from the
ordinary LS approach in that the noise variance is subtracted
from the diagonal elements of the correlation matrix of the
noisy observed data. In the TLS estimation, the noise variance
is specified by the minimum eigenvalue of the matrix con-
structed by appending a noisy observed data vector to the
noise-corrupted data matrix. The CLS estimate is given by
using the inverse of the signal correlation matrix with the
diagonal elements subtracted by the noise variance. However,
these resultant matrices have a reduced rank and then adequate
truncation for the EVD should be taken. Thus, in the overde-
termined CLS approach, the estimation of the noise variance
and the truncation of eigenvalues are mutually dependent
[5][6], therefore it is significant to decide them simultaneously.
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We will clarify that the detection of the number of sinusoids
is closely related to the optimal truncation for the EVD, which
can be performed by introducing multiple regularization pa-
rameters. Further, an iterative data-adaptive algorithm using
only received data is given to estimate the noise variance and
the regularization parameters for the truncation simultaneously
to determine the number of sinusoids.

2.  CORRECTED AND TOTAL LS METHOD

2.1  Description of Signal Model

Let the observed signal consist of complex sinusoids in
white Gaussian noise as

    y t x t e t( ) ( ) ( )= + ,         for      t n m= ⋅ ⋅ ⋅ +1 2, , , (1)
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where     { ( )}x t  is a signal part consisting of multiple sinusoids,
    { ( )}e t  is a zero-mean white Gaussian noise with variance     σ e

2 .

  f j  and   c j  are the frequency and complex amplitude of the
j-th sinusoid. The problem is to detect the number of sinusoids
  M  from the observed   n m+  data samples     { ( )}y t .

We will treat with the sinusoidal signal     { ( )}x t  as an over-
determined model with the order   m      ( )m M≥  described by

    x t t ax
T( ) ( )= ϕ (3)

where      ϕ x
Tt x t x t x t m( ) ( ( ), ( ), , ( ))= − − −1 2 L  and     a a a= ( , ,1 2

    L , )am
T . Then the observed signal     { ( )}y t  is then given by
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Thus the observed signals from     t = 1 to   t n=  are expressed
in a compact form as

  y a wy= +Φ (5)
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The data matrix   Φ y  can also be written from (1) by

  Φ Φy x E= + (6)

where     Φx x x x
Tn= [ ( ), ( ), , ( )]ϕ ϕ ϕ1 2 L ,     E e e e n T= [ ( ), ( ), , ( )] .1 2 L

Thus it is noticed that the data matrix   Φ y  and data vector

  y  are contaminated by the additive noises as described by
(5) and (6), where   Φx  and   E  are the corresponding true



signal matrix and noise matrix in which the each component
is given by (1).

2.2  Rank Deficiency Problem in CLS and TLS Estimation

In this paper, we take a CLS estimate which is given by
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It can be noticed from (7) that the CLS estimate requires the
true noise variance     σ e

2  and that the   m m×  matrix in the
bracket in (7) approaches a true signal correlation matrix
with the rank   M      ( )M m< , which becomes singular for a
sufficiently large   n . Therefore in detection of the number of
sinusoids based on the CLS approach using the overdetermined
model, we have to consider the problem how to simultaneously
estimate both the noise variance     σ e

2  and the rank of the true
signal correlation matrix. The TLS estimate is given by re-
placing     σ e

2  with the minimum eigenvalue     λmin [( , ) ( ,Φ Φy
H

yy

    y)]  and it is equivalent to the CLS estimate for   n → ∞ .

3. OPTIMAL RANK DETERMINATION PROBLEM

3.1  MSE of Regularized CLS Estimate

By using the eigenvalue decomposition the CLS estimate
(7) can be rewritten by
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where     { }vi  and     { }λ i  are the eigenvectors and eigenvalues
defined as follows:

    

1
n

V Vy
H

y
HΦ Φ Λ= (9)

where     V v v vm= [ , , , ]1 2 L ,   V V V V IH H= = ,   Λ = diag[ , ,λ λ1 2

    L , ],λm  and     λ λ λ1 2≥ ≥ ≥L m . Since the number of signals is
  M , it holds that     λ λ λ σM M m e+ +≅ ≅ ≅ ≅1 2

2L . Therefore the
denominators in (8) for     i M≥ + 1 become nearly zero and it
causes the CLS estimate to be numerically unstable.

To overcome this problem, we introduce a regularization
matrix   R   to obtaine the regularized CLS estimate as
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The MSE of the estimate (10) can be evaluated by taking
account of up to the fourth moment. The result is given as:

Theorem 1 [4]: The MSE of the estimate (10) is given for
sufficiently large   n  as
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Now by specifying the regularization matrix by use of the
eigenvectors as
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we can rewrite the MSE in (11) as
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where     ̂ ({ })a iγ  is the regularizaed estimate expressed in terms
of the regularization parameters     { }γ i , which is given by
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3.2  Minimum MSE-Based Truncation of Eigenvalues

It can be noticed from (8) and (14) that the whether the
eigenvalue   λ i  should be retained or discarded corresponds to
the choice of     γ i = 0 or   γ i = ∞ . Therefore the problem is
formulated as follows: Determine     { }γ i  so as to minimize the
MSE (13) under the constraint that     { }γ i  has only two values
  0  and ∞ . The solution is given  in the next theorem.

Theorem 2: The optimal decision rule for retaining or dis-
carding the eigenvalue   λ i  so that the MSE in (13) can be
minimized is given by
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where     { }γ i
∗  minimize the MSE in (13)  without the constraint

and are given by
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Remark 1: Theorem 2 gives the threshold value for deciding
whether the eigenvalue   λ i  should be retained or discarded.
Therefore, if the regularization parameters in (15) satisfy that
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then we can conclude that the number of sinusoid is   M  by
finding the intersection of the plots of     λ σi e− 2  and   γ i

∗  as
illustrated in Fig.1. However, the above truncation scheme
requires the true values of   a  and     σ e

2 , so they should be
replaced with their estimates using the accessible finite data
samples.

Remark 2: The true parameter vector  a  of the overdetermined
model is included in (13). It is the parameter of the overdeter-
mined model (3) obtained in a noise-free case, which can be
represented by

    
a v v g

i

M

i
i i

H
x=

=
∗

∗ ∗ ∗∑
1

1
λ

(18)

where   λ i
∗  and   vi

∗  are the eigenvalues and eigenvectors of the
signal correlation matrix     Σ Φ Φx n x

H
x n= →∞lim ( )  and   gx
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3.3  Estimation of Noise Variance

The problem considered in this section is how to estimate
the noise variance     σ e

2 . We employ an alternative regularized
LS estimate     â RLS  which can minimize an weighted LS criterion
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The regularized LS estimate is given by
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which is a biased estimate but it plays an important role of
estimating the noise variance. In order to deal with an ill-
conditioned case when the noise variance is rather small, we
employ an alternative regularization matrix   R , which will be
specified in the next section. Now the noise variance satisfies
the following relation:

Theorem 3:  For a sufficiently large data length   n , the noise
variance     σ e

2  satisfies that
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4  DATA-ADAPTIVE ITERATIVE ALGORITHM

4.1  Replacements with Their Estimates

(16) and (21) give the key relation for the minimum MSE-
based rank determination in the overdetermined CLS estima-
tion. However, since the true values of the unknown parameters
  a  and     σ e

2  are included in (16) and (21), they should be
replaced by their estimate using an alternative set of reg-
ularization parameters     { }µ j  as
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The noise variance estimate in (23) can also be rewritten by
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Thus, by substituting the estimates in (22) and (23) into
(16), we calculate the regularization parameters in (16) in
terms of these estimates as
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From (28) it is noticed that     ̂γ i
∗  is expressed in term of     { }µ j .

Since     ̂γ i
∗  should be equal to   µ i  for     j m= ⋅ ⋅ ⋅1, , , then they

should satisfy the nest nonlinear equation
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4.2  Data-Based Iterative Algorithm for Rank Decision

In this section, we give an iterative algorithm of calculating
the solution of (30) by placing the constraint that   µ µ1 2≤ ≤
    µ µ3 ≤ ≤L m . It can be noticed from (28) and (30) that we
can employ an iterative calculation by setting     γ µi

k
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(Step 1)  Set     k = 0  and the initial values of     γ εi
( )0 =  for

    i m= , ,1 L  , where ε  is chosen larger than machine
precision.

(Step 2)  Calculate the estimate of the noise variance by using
(26) as
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(Step 3) Update the regularization parameters in the nest

iteration by using (28) and (29) as
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(Step 4): Let the increment of     γ i
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 If  it is satisfied that 
    
∆γ δi

k( )+ ≤1  for all converged

    γ i
k( )+1 , then stop the iteration. Otherwise, by using the

correction term     ∆γ i
k( )+1 , update the regularization

parameters as
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Return to Step 2 and repeat the above procedure until

    γ i
k( )+1  converges to a constant or until it increases over

a specified large value. Thus, it gives the optimal trun-
cation number    K M( )=  by detecting the intersection of
the plots of     {

ˆ ({ })}( )λ σ γi e i
k− 2  and     { }( )γ i

k+1 .

We can give sufficient conditions for the convergence of
the above algorithm on a basis of the contraction mapping, in



a similar way [4]  which indicates the relation between the
truncation and the detection of signal number theoretically.
The details are omitted in this paper.

5.  NUMERICAL EXAMPLE

Let the received signal be composed of three complex
sinusoids and the independent complex white Gaussian noise.
The frequencies are     f1 0 30= . ,     f2 0 33= .  and     f3 0 35= . . The
number of data was 64 where     m = 30  and     n = 34 . As shown
in Fig.1, the truncation can be determined by the intersection
of the two plots between     i = 3 and     i = 4  which gives     M = 3.
In the iterative algorithm proposed in 4.2,     γ i

k( )  converges or
diverges in a few iteration steps. Fig.2 plots the detection
probability  per 100 samples for various SNR from -10 dB to
2 dB and shows the comparison of the various approaches.
The SNR implies the power ratio of the single sinusoid and
the noise. The AIC and MDL criteria were given in [7]. The
ABIC was proposed by one of the authors [8] where the low
rank approximation for the ordinary LS method [1] was
utilized. The proposed algorithm could attain the best
performance of detection probability, as shown in Fig.2.

The proposed rank determination is based on the min-
imization of the asymptotic MSE (13). Actually the truncation
is given so that the estimate     ˆ({ })( )a i

kγ  can be a best approx-
imation to the true parameter vector   a  in (18). Fig.3 clarifies
that the optima truncation can attain the good estimation,
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while many unstable poles appear if the adequate truncation
is not employed.

1 11 10 0
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Fig.3 Plots of poles of the estimated model (indicated by the
circles) with order 30, and the theoretical model
(indicated by the crosses) calculated from (18).

6.  CONCLUSION

We have presented the minimum MSE-based rank deter-
mination algorithm for the eigenvalue decomposition which
is effective to the decision of the number of sinusoids imbedded
in white noise. Further, the data-adaptive iterative algorithm
using only accessible data has been clarified to estimate the
noise variance and the regularization parameters simulta-
neously. Finally the simulation results indicated that the pro-
posed scheme is effectively applied to a case with a small
number of  observed data.
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