
Fig.1. Phase evolution in a Trellis diagram

Where T is a symbol period time. As it can be
deduced from the Trellis diagram, all the vectors of an
interval (branches) are given by the original phase and its
corresponded symbol. Therefore the branches can be

characterized by a branch vector,     S    branch, that depends on

the original phase θbranch and the corresponded symbol

αbranch :
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By this way, the signal (in the k interval)    x   k is
reduced to a vector that characterizes a determinate branch
(the branch whose associated vector is equal to the
transmitted signal) plus the noise:

xk Sk k k nk= ( ) +θ α, (5)

Thus, the phase of the received signal will be determinied
by a determinate path along the Trellis diagram (and
definite by the burst of transmitted symbols α ) affected

by the noise. The received signal, in the analog time
domain, can be expressed as:

x t s t n t( ) ( , ) ( )= +α (6)

Assuming that the noise is given by an additive, white
Gaussian channel, the optimum detector must minimize
the log-likelihood function [4]:

log( [x(t)]) x(t) s(t, )
2

dtN
0

NT
Λ = −[ ]∫ α̂ (7)

where α̂  is the estimated symbol's vector. The last

expression is the Euclidean distance between the received
signal and the “signal” definite by the estimated path
coursed along the Trellis diagram.

The simplest algorithm that minimizes (7) is called
the Maximum Likelihood Algorithm. However, this
algorithm does not try minimize (7) operating with the
complete estimated burst of symbols α̂ . The ML

estimation is acomplished symbol by symbol, without
any kind of memory of the past and evaluating all the
Euclidean distances with each processed symbol. In order
to obtain the Euclidean distance (weight), xk  it is

subtracted to each of branches vectors of k intervals:

Wbranch xk Sbr= − 2
(8)

And the symbol associated to the branch whose weight is
the minimum, results the estimated symbol.

However, to guarantee the minimum of Euclidean
distance for each symbol interval does not imply that it is
guarantied this minimum in all the symbols burst, as can
be easy deduced. Therefore it is interesting to develop an
algorithm that takes into account the past; that in some
way take into account the weight along the symbols
(branches). Because there are lots of possible paths, it is
necessary to leave aside the paths with higher
accumulated weight, deciding at the end the burst of
symbols that are associated to the path with minimum
accumulated weight. This is, briefly, the Viterbi
algorithm.

The discrimination of paths with higher weights is
carry through by the following method: since two
branches arrive to each final phase of the interval (final
state) with an accumulated weight (which is determinated
by the accumulated weight in the original phase and the
associated ones to the branch), the branch (and the path)
with higher accumulated weight will be left aside. The
other accumulated weight (with its associated path) will
be associated to the final state, that will become an initial
state in the following interval. An example of this
process can be seen in the following figure:

Fig. 2. Weights in the Viterbi Algorithm. Over the states are
the accumulated weight and its associated path.

Since the associated path is incremented in each
iteration, it is necessary a memory of two times the
number of transmitted symbols. Furthermore, we could
not decide between the two paths of minimum
accumulated weight until the end of the burst of symbols,
delaying the decoding until (at least) the end of
transmission. In order to avoid this problems, it will be
taken into account that the two paths must have the same
beginning, differing only in the last symbols; thus, only
a few symbols have to be saved, the (i.e.) L symbols
immediately anterior and give as decoded symbol the
symbol L +1 anterior, that it will be common to the two
selected paths. The final result will be sensibly better
than the ML criteria ones without increase the
computational cost in a symbol interval.

III. ORTHOGONAL  DECOMPOSITION

Until now, as well in the ML as in the Viterbi
algorithms, the weights of the branches were given by
the Euclidean distance between the branch and the received
signal in the symbol interval (8), which implies to



operate with Ns x 1 dimensional vectors. It will be of
great interest to try to reduce the vectors' dimension. Our
question is how to obtain shorter vectors.

The transmitted signal ( S( )+1  or S( )−1 ) can be

decomposed (Orthogonal Decomposition, OD) into a
subspace (that will be called “signal subspace”), this is,
to present it in a lineal combination of orthonormal base
vectors:
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where V1 and V2  are the orthonormal base vectors; and

since they are, it can be obtained easily, in a symbol

interval, the    a   k components  multiplying V1 and V2  by

Sk . For example, if +1 has been transmitted, it will be

obtained     a   
(+1)

:
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Components of    a   
(-1)

 will be obtained  analogously.

In order to obtain the components     a   
(+1)

  and     a   
(-1)

  it
is necessary to know the vectors V1 and V2 . This

vectors are obtained applying  a Singular Value
Decomposition (SVD) to the covariance matrix C_s

generated by S( )+1  and S( )−1 :

C_ s = 1
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where Vi  are real eigenvectors and λ i are their associated

eigenvalues (real numbers and major to minor ordered).
Since C_s is generated by two linearly independent

vectors, C_s is range-2 and λ3, λ4, ...,λNs will be nulls.
Thus, the base vectors  V1  and V2  will be the

eigenvectors associated to the no nulls eigenvalues.
Once deduced the base vectors  V1  and V2 , we can

obtain the components of the received signal. Therefore,
for each interval:
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Thus, if +1 has been transmitted, we have:

l VH xk a
j k VH nk

l VH xk a
j k VH nk

e

e

11 11

12 12

1
1

1

2
1

2

= ⋅ + = ⋅ + ⋅

= ⋅ + = ⋅ + ⋅

( )

( )

θ

θ
 (14)

and it is defined the received vector l(+1) = l11 l12( )T
in

the signal subspace. Analogously, if -1 is transmitted we

obtain l(−1) = l21 l22( )T
.

Therefore, if the received signal is multiplied in a symbol

interval by the base vectors V1 and V2 , the    l   k vector can

be defined  as the vector that contains the components of
this received signal in the signal subspace:

lk
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This vector    l   k is 2-dimensional.

IV. ORTHOGONAL DECOMPOSITION, ML
AND VITERBI

Since the received signal can be characterized by its
projection in the signal subspace, the ML criteria can be
applied to this projection instead of the direct signal
(DS). Then, the minimum distance between the signal
transmitted projection and the received signal projection
will be looked  for.

The possible transmitted signals are given in the
interval branches, and in the anterior section were
represented by (4). Now, the branches will be associated
not to the entire signal; instead of that, the branches will
be associated to its projection in the signal subspace:

S branch br , br
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which will have 2x1 dimension. Therefore, the branch
weights will be determinate by the Euclidean distance

between the projection of received signal    l   k and all the
branch vectors:

W'
branch lk S br

2
= − '  (17)



Now, the weight is given between 2x1 vectors which are

the complete projection of     x   k and     S    br into the signal
eigenvectors (Full OD).

However, the computational cost can be reduced if
only the most important component is taken into
account. That is, the 2x1 vectors are reduced to one
dimension taking into account only the projection into
the eigenvector associated to the principal eigenvalue, V1

(Partial OD):

Wbranch
' = lk,1 −abr,1 ⋅e jθbr

2
(18)

Since each branch is associated to a definite weight,
the ML criteria can be applied as was done in last section,
deciding as transmitted symbol the ones associated to
minimum weight branch given by (18).

The same way the weight of expression (18) is
applied in ML criteria instead of expression (8), this kind
of weight can be applied in Viterbi algorithm.

In both cases, the error probability will be higher than
the error probability (BER) given by (18) (or the error
probability given by (8). In computation simulating
presents  the same BER). The computational cost of the
weights in a symbol interval will be modified as
described at the following table:

DS Full OD Partial OD
Projection 0 2 x Ns   p’

2x(Ns-1)a
Ns           p’
Ns-1        a

Subtract. 4 x Ns    a 4 x 2      a 4              a
Module 4 x Ns    p

4xNs-4  a*
4 x 2      p
4 x 1      a*

4              p

Total 16Ns     p*
20Ns-4 a*

4Ns+32  p*
4Ns+32  a*

2Ns+16  p*
4Ns+14  a*

Table 1. Computational cost of weights in a symbol interval

Where “p” means product and “a” means adds between
complex numbers. The superscript * refers to an
operation between real numbers and  ´ refers to operations
between real and complex numbers. The total cost has
been evaluated considering the cost of a complex
multiplication (4 products and 2 adds).

V. RESULTS AND CONCLUSIONS

As it is deduced of table 1, the computational cost can be
significantly reduced if a large number of samples in a
symbol interval are performed. The following graphic
shows the relative computational cost (assuming the
same cost for adds and products) as function of Ns.

Graph. 1. Reduction on weight computation cost.

As can be seen, the number of operations can be reduced
until 80% in partial OD schemes. If full OD schemes are
used, the reduction becomes until 60%.

Since the partial OD does not take into account all the
components into signal subspace, it can be expected a
worst error probability. This is the price of reducing the
computational cost. However, as can be seen in the
following graphic, only approximately one dB is lost.

Graph. 2. Partial_OD  vs. Full_OD.

The goal of this method consists in achieve a
compromise between the computational cost and the error
probability.
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