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ABSTRACT

A method has been developed for the monitoring
of traffic flow behavioural dynamics in distributed
communication networks and the provision of results
from this process to a distributed neural control
mechanism which facilitates localised adaptive
traffic routing in order to maintain or regain flow
stability. It has been shown by simulation how the
novel method improves network performance and
efficiency beyond that of conventional techniques.

I. INTRODUCTION

N the current climate of change and growth within

the telecommunications industry, the increasing
expansion of networks and global communication
pathways leads to inevitable loss in performance
through the poor capability of some network control
systems to balance traffic load effectively and
efficiently. Occasions have been noted [1] where
entire networks have temporarily failed due to
inadequate control mechanisms which find difficulty
in dealing with what were once considered as rare
events, such as unforecast high volume bursts of
traffic arriving onto the communications network.

In the past many networks have been governed by
global or domain centralised controllers. These,
although providing the ability to plan prospective
traffic routes via information tabling, become
overloaded when traffic flow intensity increases
substantially, beyond expected levels. In order for a
interconnected mesh of communicating elements,
such as a telecommunications or data network, to
interact effectively and efficiently it becomes evident
that each element should contain its own control
subsystem. The conglomeration of unit element
subsystems thereby forms a network-wide distributed
mechanism capable of managing traffic flow via
localised strategic control. The localised vicinities
exchange information through inference; monitoring
the activity of neighbouring elements by measuring
traffic flow between them and the local controller. In
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this manner, each element adapts its routing
strategies based on a function of its own activity, the
activity of its neighbours and forecasts of expected
traffic behaviour within itslocal vicinity.

The research investigates the non-linear
behavioural characteristics of traffic within an
interconnected mesh of communicating elements,
develops mechanisms for monitoring fluctuations
within the dynamic behaviour of the traffic and for
controlling traffic flow according to tactical decisions
based on all available information.

1. TRAFFIC DYNAMICS
The method and results presented within this
paper are derived from a model developed for the
study of traffic dynamics in communications
networks, based on an interconnected mesh of
switching elements. The switching fabric [4] of each
of these elementsisillustrated in figure 1.
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The generic element contains an arbitrary
number of fully interconnected input and output
queue pairs. The traffic flow between these queues is
governed by a set of non-linear signal translation
functions [2] which model the traffic flow
characteristics of a prioritised switching system
exhibiting traffic synchronisation [1].

Traffic arrivals at each element of the simulated
network consist of the superposition of an exogenous



traffic  stream generated with  non-uniform
probability, and a proportion of the endogenous
departure streams from each directly connected
neighbouring element. The exogenous stream is
tailored to model both peaked-uniform and bursty
traffic sequences.

The routing strategy is based on logical paths
though the spatial geometry of a network and the
behavioura characteristics of the traffic stream are
monitored by the control system of each element on
the source-destination route.

Given a uniform input traffic stream with peak
bursts described by the function

u(t)=m + f (m,t) (1.1)

Where m is the mean stable flow and f(m,t) isa
function of the mean flow relative to time t, which
represents a peak burst of duration t+dt. Each
peak ocecurs with a probability
P(f(mt)>0) =1/t, where 1 is the periodic
sample frequency of a peak event.

The general behaviour of a unit generic element

under such input conditions is described by the state
space analysis, shown in figure 2.
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Figure2 State Space map of unit element output

This map illustrates the fluctuations in stability as
the input rate, u(t), is uniformly increased,
subsequent to the removal of transient effects. It may
be noted that as the input is increased, the traffic
behaviour grows increasingly unstable in nature. The

uniform linear patterns propagating through the map
are an indicator of stable period cycles, whilst the

increase in y(t) intensity is a general indication of
evolving unstable behaviour.

The effect of cascading this behaviour through
five serially connected elements is shown in the state
space map of figure 3.
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Figure3  State Space map of cascade output

This analysisillustrates the growth in intensify of the
unstable periodic behaviour through the propagation
of the traffic signal. The additive cascade function
may be expressed as

Yo ()= 1 (Vs (). 2, (1)) 12)

, Where y,, expresses output signal, x, the transfer
function of the unit element switch and n specifies
the cascade element.

1. TRAFFIC FLOW PROCESSING

In order to quantify the behaviour of the generic
network switching element a method has been
devised to monitor dynamic activity present in the
traffic stream and produce a quantitative measure
which may be utilised by a control mechanism [3].

The method associates a virtual area of the
control sub-system memory with each arrival and
departure queue present within the switch fabric. The
reserved areas are organised as indexed vectors, with
each being updated at discrete time intervals during
the model simulation. The update consists of
applying relationship (1.3) to the mean level of
traffic intensity over the measurement interval and
incrementing the associated index.
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imax 1S the maximum size of vector v and@; is the
traffic rate at time instant t.



In this manner a moving-window distribution is

produced within the vector, directly relating to the
dynamic properties of the traffic stream. The
distribution is then treated in terms of statistical
features, each regarding an aspect of the dynamic
activity in order to create a series of coefficients
representative of the measurement window.
The vector contents are constantly monitored to
ensure that redundant historical data is removed in
order to maintain the moving variable sized time-
window on the traffic flow evolution. This is
achieved by assigning a lifetime to each to each
measurement entering the vector. At the time of
expiration the data is removed if it is found not to be
forming part of the consistent periodic dynamics.

The core statistical features extracted from the
distribution data consist of the zero-ratio, the peak
count, the entropy and the degree of oscillation. The
zero-ratio relates those indexed vector locations
containing no data to those containing some data, as
described by

z=*2—= foral v[K] >0 (1.4)

The peak count provides the aggregate distinct peaks
within the distribution to establish an approximation
of the fundamental frequency periodicity present
within the traffic stream.

The entropy measurement indicates the degree of
disorder within the traffic flow according to equation
set (1.5)

E:kgoPkln(Pk),

where R = V[j] . (1.5)

The degree of oscillation measures the number of
consistent points of oscillations within the traffic
stream to establish whether a regular pattern exists
within any detectable periodic behaviour.

Each of these descriptive metrics represent an
aspect of the traffic flow distribution window,
together forming a general characterisation of the
system behaviour. Thisinformation is then presented

as feature coefficients to a predictive neural
mechanism as described in section 1V.

Traffic emanating from the generic switching
element provides a component view of any dynamic
activity generated by the element itself and from
endogenous traffic arriving from neighbouring
elements. This provides an inferred measurement of
activity within each element of the surrounding
network locale; and in this manner the overlapping
distributed evaluation and control system envelops
the entire network.

IV. THe TacTicaL ConTROL M ECHANISM

The task to be solved by the control mechanism is
essentially one of forecasting the temporal evolution
of the traffic stream. In order to achieve this, the
statistical feature coefficients from the traffic
processing stage are presented to the inputs of a
recurrent backpropagation neural network, as
illustrated by figure 4.
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Figure4  Recurrent Back-Prop Model

The network consists of the standard feedforward
model with recurrent context links ,(¢1...¢N),
propagating feedback information from the output

layer, (El...EN), into the input layer, ()\1...)\ N) .
The context unit, C;, activation function therefore
takes the form

C = g(ci)Dg O s (1.6)

where the function g(Ci) refines the feedback
strength of the context link product.



Off-line supervised training of the recurrent
network consists initially of the analysis of switch
performance under the expected range of load
conditions, and the corresponding statistical feature
mapping relating to behavioural change.

A sequential training sequence is established
from this analysis, with the input vector consisting of
temporal statistics and the output, a tactical
prediction of future behaviour. The network is
trained to form a decision-based mechanism capable
of making forecasts of the most likely future traffic
behaviour based on current temporal dynamics.

In application, the predictive neural network is
capable of monitoring the growth of the vector
distribution and thereby search for sign of emerging
patterns in the dynamic behaviour. Any patterns
detected may indicate a range of situations; from that
where stability is seen to be consistent indicating that
no adjustments in traffic routing are necessary, to
showing that the temporal behaviour is indicating
that an extreme situation may arise in the near future
and that traffic should be re-routed via alternate
paths to pre-compensate.

Information from each vector forecast is
subsequently collated by a parent decision process
producing an optimal routing solution based on the
perceived state of the network and the desired
direction of the traffic flow.

SimuLATION REsuLTs AND CONCLUSIONS

The results presented in this paper are based on a
locally interconnected mesh of 100 processing
elements, with uniform traffic sourcing incorporating
irregular intermittent information bursts.

Figure 5a describes the traffic behavioural
activity of an arbitrary element suffering heavy
loading conditions, with no control activated. The
second figure, 5b, shows traffic flow through the
same element subsequent to the control mechanism
being activated. The reduction in dynamic activity
and therefore instability is evident by comparison.

Figure 6 describes the overall network efficiency
in terms of the delay associated with the transmission
of traffic from source elements to destination
elements. T is described by,

- Time taken for message traversal

spatial distancetravelled

Efficiency is clearly improved through the reduction
in transmission delay brought about by adaptive
routing around potential network bottlenecks.
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Figure5a  State Space map of sample element output
with no control activated.
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Figure5b  State Space map of sample element output
with control mechanism activated.
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Figure6 Network efficiency in terms of transmission
delay
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