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1. Introduction Assumptions:
A.1 s ti ( )  is a zero-mean wide-sense stationary

process. For each t, {s ti ( ) , i=1,...,n}are mutually

independent.

During recent years, there have been much
interests focused on blind identification and blind
source separation. Many approaches have been
proposed mainly for the special and simple case in
which the MIMO system is linear
memoryless[1][2][4][5]. However, in a variety of
applications in which wideband sources are
involved, e.g., speech dereverberation, speech
enchancement in the presence of background noise
and competing speakers separation, these
approaches can not be applied. Several solutions
have been presented for the two-source two-sensor
wideband problem with two channels assumed
identity systems[6-8].

A.2 e ti ( )  is a zero-mean stationary Gaussian

process. For each t, {e ti ( ) , i=1,...,n} are

independent of {s ti ( ) , i=1,...,n}.

A.3 Bispectra P
s s si i i

* ( , ),ω ω1 2  ∀ω 1 2 and ω , where *

denotes complex conjugate, exist for all s ti ( ) 's.

A.4 Trispectra P
s s s si i i i

* ( , , ),ω ω ω1 2 3  ∀ω 1 2 3,   and ω ω ,

exist for all s ti ( ) 's.

Denote x(t) = [ ( ),... , ( )]x t x t t
1 2 ,

s(t) = [ ( ),... , ( )]s t s tn
t

1 , and e(t) = [ ( ),... , ( )]e t e tn
t

1 .
The objective of blind identification and source
speparation is to estimate the channel coefficients

aij
k( )  and the individual signals, s tj ( ) .We can take

advantage of indeterminacy of blind

identification[5] to assume: i) a j1
0 1( ) = , j=1,...,n;

and  ii)K K K i ni i in1 2 1= = = ∀ =� , ,..., .

In this paper, the general wideband blind
identification and source separation problem is
considered. All of the restrictive assumptions made
by the papers above are removed in our proposal
except the independence between sources and the
FIR property of the channel frequency response.
We have proved 1) a bispectra based criterion,
which states sufficient condition for the
identification and separation of asymmetriclly
distributed sources,  and 2) a  trispectra based
criterion, which states sufficient condition for the
identification and separation of non-Gaussian
sources. Algorithms are also developed to
implement these criteria. The validity of the
criteria and the efficiency of the algorithms are
verified by simulations.

3. Criterion and algorithm based on
bispectra

Taking the Fourier transform of the
observations
X A S E( ) ( ) ( ) ( )ω ω ω ω= +
in which X ( )ω , S( )ω , E ( )ω  are the Fourier

transform of x(t) , s(t) , and e(t) , and
2. Problem Formulation

Let n denote the number of sources and sensors.
The wideband formulation of the problem is
written as:

A

a e a e

a e a e

k jk

k

K

n
k jk

k

K

n
k jk

k

K

nn
k jk

k

K

n

n nn

( )

( ) ( )

( ) ( )

ω

ω ω

ω ω

=





















−

=

−

=

−

=

−

=

∑ ∑

∑ ∑

11
0

1
0

1
0 0

11 1

1

�

� �

�

x t a s t k e ti ij
k

j i
k

K

j

n ij

( ) ( ) ( )( )= − +
==
∑∑

01

where x ti ( )  is the observation of ith sensor, s tj ( )  is

the jth source, aij
k( )  and Kij  are the kth coefficient

and the order of the FIR filter coupling the jth
source and ith sensor respectively,  e ti ( )  is the

measurement noise at the ith sensor.

We want to eliminate the contamination effects of
A  by using an n n×  reconstruction system H
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where T H A( ) ( ) ( )ω ω ω= , Y( )ω  denotes Fourier
transform of recovered signal vector

y(t) = [ ( ),..., ( )]y t y tn
t

1  and H T Cn n( ), ( )ω ω ∈ × .
Criterion: Suppose there exists a set of frequencies

{ , , ... , }( )ω l l L= 1 such that

P l L q n
s s s

l l

q q q
* ( , ) , ... , . , ... ,( ) ( )ω ω− ≠ = =0 1 1    

(2)

 
P l L q n

s s s

l l

q q q
* ( , ) ,..., . ,...( ) ( )ω ω− − ≠ = =1 0 2 1       (3)

Remark 1: Since the objective is to obtain

T H A Pl l l l( ) ( ) ( ) ( )( ) ( ) ( ) ( )ω ω ω ω= = Λ , for

l L=1,..., ; where Λ ( )( )ω l  is an arbitary non-
singular diagonal matrix, it is convenient to

suppose Hpp
l( )( )ω =1, p=1,...,n. Then (10), (11)

and (12) are linear in

H p n q npq
l( ), { ,..., }, , ...,( )ω ∈ =1 1  and may be

solved by least square procedure.

Denote ∆ω( ) ( ) ( )l l l= −+ω ω1 . Suppose
 det ( )T 0 0≠
(4)

det ( ) ,...,
( )

T l L
lω ≠ =0 1                

(5)

det ( ) ,...,
( )

T l L
l∆ω ≠ = −0 1 1              

(6)
Then under the assumptions A.1-A.3,

{ ( ), , .. . , }( )T l Llω =1  are generalized permutation
matrices Remark 2: The solution  H pq

l( )( )ω , p n∈ { , .. . , }1 ,

q=1,...,n only depends on H pjq
l( ),( )ω  j < ,

H pkq
l( ),( )ω  k >  and H jq

l( ),( )ω −1  j p< ;

q n= 1,.. . ,  (the reason is given in the proof of

criterion), so for any given H pjq
l( ),( )ω  j < ,

H pkq
l( ),( )ω  k >  and H jq

l( ),( )ω −1

j p q n< =, , ... , ;1  we shall use (10)-(12) to solve

H pq
l( ),( )ω  p n∈ { ,..., },1  q n= 1,...,  and by

alternating between various p n= 1, ... , , we obtain

an iterative procedure to adjust H l( )( )ω .

T Pl l( ) ( )( ) ( )ω ω= Λ (7)
with some permutation matrix P and some

nonsingular diagonal matrix Λ ( )( )ω l  if

P l L
y y y

l l

i j k
* ( , ) , ... , .( ) ( )ω ω− = =0 1           (8)

P l L
y y y

l l

i j k
* ( , ) ,..., .( ) ( )ω ω− − = =1 0 2       (9)

for all i, j, k=1,...,n, j<k.
The conditions in (2) and (3) are satisfied if

the sources have asymmetric probability
structures.By (1), equations (8) and (9) are
satisfied if ∀ ∈p n{ ,..., }1

By (5) and (7) we have
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in which Λ− =1
1( ) ( ( ) , ... , ( ))( ) ( ) ( )ω λ ω λ ωl l

n
ldiag

and { ,..., } { ,..., }j j nn1 1= . To eliminate the

unknown scaling of the column vectors in (14), we
divide the column vectors by their first elements
and get the matrix

where z t jj ( ), , ,=1 2 3 are mutually independent

computer generated i.i.d. sequences of
exponentially distributed random variables. The
FIR filters coefficients were chosen randomly
between -1 and 1, as shown in Table I. Here we
considered the noiseless case for simplicity and
have 21 coefficients to determine. We

computed � ( )( )A lω  at eight frequencies, say,

ω π( ) , ,..., ;l l
l=

+
⋅ =

1

10
1 8  to estimate the filter

coefficients. We have performed 50 Monte-Carlo
trials using 4096 samples each source. The
empirical mean and standard deviation of the
estimated filter coefficients are given in Table I,
indicating convergence to the desired solutions. We
also note that the algorithm converges very fast,

usually in 3-5 iterations to the desired H l( )( )ω  for
each l L∈ { ,... , }1 .
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Algorithm:
1. Estimate the bispectra of the observations, say

P
x x x

l l

q q q1 2 3

* ( , )( ) ( )ω ω− , P
x x x

l l

q q q1 2 3

1
* ( , )( ) ( )ω ω− −

where { , ,..., }( )ω l l L = 1  are preselected

frequencies for l L= 1,...,  and q q q n1 2 3 1, , ,... ;= via

the complex demodulates approach[3].
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T T j k q n j kjq
l

kq
l( ) ( )( ) * ( )ω ω =0 1   , , = ,..., . <  (AP.11)

By (5) we have

T P l Ll l l( ) ( ) ( )( ) ( ) ( )ω ω ω= Λ         = ,... ,1       (AP.12)
Analogous to the derivation of (AP.11), one may
obtain by (3), (6) and (9)

T T j k n j k

l L q n

jq
l

kq
l( ) ( ) , ,... ; ;

,... ; ,...,

( ) * ( )ω ω− = ∀ = <

= =

1 0 1

2 1

      

                                          
 

(AP.13)By A.1, A.2 and (8)
By (AP.12) and (AP.13), we have (7).

T T T Piq
q

jq
l

kq
l

s s s

l l

q q q

( ) ( ) ( ) ( , )( ) * ( ) ( ) ( )
*0 0∑ − =ω ω ω ω

(AP.2)

Table I. The true value, estimate mean and
standard deviation of the filter coefficients

Filter
coefficient

True value Mean Standard
deviationfor all i,j,k=1,...,n; j<k; By (2)

a11
1( ) -0.4442 -0.4409 0.0107

q

n

jq
l

kq
lT T T

=
∏ =

1

0 0( ) ( ) det ( )( ) * ( )ω ω (AP.4) a21
0( ) 0.6848 0.6864 0.0141

a21
1( ) -0.8580 -0.8625 0.0141

Then by (4)

q

n

jq
l

kq
lT T

=
∏ =

1

0( ) ( )( ) * ( )ω ω (AP.5)
a21

2( ) 0.4083 0.4113 0.0116

a31
0( ) 0.2044 0.2016 0.0073

Without loss of generality, suppose

T Tj

l

k

l

1 1 0( ) ( )( ) * ( )ω ω = , then by (2)
a31

1( ) -0.4918 -0.4884 0.0097

a31
2( ) -0.8859 -0.8800 0.0125

q

n

jq
l

kq
l

pT T T p n
=

∏ = =
2

1 0 0 1( ) ( )
~

( ) ,...,( ) * ( )ω ω        

(AP.8)

a12
1( ) 0.3480 0.3508 0.0153

a22
0( ) -0.1709 -0.1676 0.0076

a22
1( ) 0.1501 0.1435 0.0136

where ~
( )Tp1 0  denotes the cofactor of Tp1 0( ) .

Suppose 
q

n

jq
l

kq
lT T

=
∏ ≠

2

0( ) ( )( ) * ( )ω ω , so ~
( )Tp1 0 =0 for

all p=1,...,n and

det ( ) ( ) ( )
~

( )T T T
p

p p
p

n

0 1 0 0 0
1

1 1
1

= − =+

=
∑  which

contrudicts with (4). Thus

a22
2( ) -0.6292 -0.6248 0.0104

a32
0( ) -0.1485 -0.1541 0.0165

a32
1( ) -0.3864 -0.3906 0.0116

a32
2( ) 0.2652 0.2712 0.0147

a13
1( ) -0.4167 -0.4097 0.0162

a23
0( ) -0.7040 -0.7036 0.0127

a23
1( ) 0.6033 0.6042 0.0118

q

n

jq
l

kq
lT T

=
∏ =

2

0( ) ( )( ) * ( )ω ω         (AP.9) a23
2( ) 0.8699 0.8714 0.0118

a33
0( ) -0.0801 -0.0752 0.0126

Similarly, one can obtain

q r

n

jq
l

kq
lT T

=
∏ =( ) ( )( ) * ( )ω ω 0     r = 3,..., n.

(AP.10)

a33
1( ) -0.5838 -0.5798 0.0091

a33
2( ) -0.4397 -0.4375 0.0144

Thus we derive
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