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ABSTRACT

The performance of adaptive beamforming algorithms is kno�
wn to degrade in rapidly moving jammer environments� This
degradation occurs due to the jammer motion that may bring
the jammers out of the sharp nulls of the adapted direc�
tional pattern� Below� we develop a uni�ed approach allow�
ing to make a wide class of adaptive array algorithms robust
against possible jammer motion� This is achieved by means
of arti�cial broadening of the null width in all jammer di�
rections� Data�dependent sidelobe derivative constraints are
used which do not require any a priori information about
the jammers� The robust modi�cations of several well known
adaptive array algorithms are formulated�

�� INTRODUCTION

The performance of adaptive arrays severely degrades if the
weights are not able to adapt su�ciently fast to the changing
�non�stationary� jamming situation or to the antenna plat�
form motion� Fast adaptation has therefore be the aim of
research in these cases� Moving jammers represent a serious
problem� because for large antennas the directional pattern
nulls are extremely sharp and jammers may soon move out
of the nulls� i�e� high gain antennas are very sensitive to this
type of non�stationarity�

Recently� a large number of robust adaptive beamform�
ing methods has been studied� However� only the robustness
against desired signal positioning errors was addressed� In
this paper� another problem is considered� We assume that
the desired signal direction is exactly known� whereas the rel�
ative angular motion of the jammers may be fast� In other
words� we address another type of robust adaptive array �
the robustness against possible jammer motion� We develop
a uni�ed framework allowing to incorporate this robustness
property into various adaptive beamforming algorithms� The
main idea is to broaden the width of the pattern nulls in the
jammer directions� For this purpose� derivative constraints
are used� which do not require any a priori information about
the jammers� Similar constraints have been used in 	
�� 	��
for several particular problems�

We demonstrate the strength and generality of the de�
veloped approach and formulate robust modi�cations of sev�
eral popular algorithms� such as the Sample Matrix Inver�
sion �SMI� 	
�� the diagonally loaded SMI �LSMI� 	��� the
Hung�Turner �HT� 	��� and the Eigenvector Projection �EP�
	�� methods� Although we consider only these algorithms�
the developed approach allows to incorporate the robustness
property into any other type of adaptive beamformer�
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�� DATA�DEPENDENT DERIVATIVE

CONSTRAINTS

We formulate the problem for a linear array of n sensors tak�
ing into account that the approach considered is valid for
planar or volume arrays� too� Let q �q � n� narrowband jam�
mers and a single narrowband signal impinge on the array
from unknown directions f��� ��� � � � � �qg and from a known
direction �S� respectively� Let the jammers be uncorrelated
with each other and with the signal� too� Unless otherwise
speci�ed� the jammer sources are assumed to be stationary
�e�g� non�moving�� and the array output vectors are assumed
to be statistically independent� Then the output vector at the
i�th time instant �or snapshot� of the array can be expressed
as�

y�i� � As�i� � �sS�i�aS � n�i�� A � 	a��a�� � � � �aq � �
�

where the jammer direction vectors a��a�� � � � �aq � and desired
signal vector aS can be modelled as plane waves�

a��� � �expfjx��g�expfjx��g� � � � � expfjxn�g�
T ���

Here a��� is the n � 
 direction vector corresponding to the
angle �� aS � a��S�� � � ����	� sin �� 	 is the wavelength� xl
is the coordinate of lth sensor� s�i� � �s��i�� s��i�� � � � � sq�i��T

is the q� 
 vector of random jammer waveforms� and sS�i� is
the signal waveform� The n � 
 vector n�i� contains random
sensor noise� while parameter � �� or 
� indicates the presence
of the signal� The n � n interference�plus�noise covariance
matrix is

R � 
�I�ASA
H �
�

where 
� is the noise variance� S � Efs�i�sH �i�g is the q� q
covariance matrix of the jammer waveforms� I is the identity
matrix� and ���H denotes Hermitian transpose�

The complex adaptive beamformer output with the adap�
tive weight vector w at the ith time instant is

z�i� � w�i�Hy�i�

In the stationary case and if R is known� the solution for
the optimum weight vector of the adaptive array maximiz�
ing the signal�to�interference�plus�noise ratio �SINR� can be
expressed in the well known form�

wopt � �R��aS ���

where � is a main beam gain constant� which does not a�ect
the output SINR and will be omitted below without loss of
generality� Typically� jammers are much more powerful than
the sensor noises and the signal� We use this assumption
below�

�We use this assumption only for derivations and cancel it later�



De�ne an orthogonal projection on the column space of
a m� �m� full rank matrix C and an orthogonal projection
onto its orthogonal complement as

PC � C
�
C
H
C
���

C
H � P

�

C � I�PC ���

respectively� Here m� � m�� and so PC and P�
C

are m��m�

matrices�
Applying the matrix inversion lemma to the matrix I �

�CHCH� where H is any m� �m� non�singular matrix and

� � �� gives the property P�C � lim���

�
I� �CHCH

�
��

�

Applying it to �
�� we get lim���� 

�R�� � P�

A
� I �PA

where PA is the orthogonal projection onto the jammer sub�
space� This implies that for strong jammers the adaptive
weight vector ��� tends to be orthogonal to the jammer sub�
space� i�e�� lim����wopt � fa��a�� � � � �aqg� This means that
the antenna pattern wHa��� has nulls in the jammer direc�
tions� To broaden the null width we may require a higher
order of the null� i�e� by requiring p�th order derivative con�
straints�


m�wH
a�����
�mj���k � ��

k � 
� �� � � � � q� m � 
� �� � � � � p ���

Using ���� we can rewrite ��� as

w � fBm
aigm�������� �p� i�������� �q ��a�

where
B � diagfx�� x�� � � � � xng ��b�

To ful�ll these constraints� we assume n � �p � 
�q�
In practice� neither R� nor the jammer directions are

known� The only available is the sequence of array snapshots
y�i�� However� for high interference�to�noise ratios �INR� and
small signal a projection orthogonal to the array data is the
same as a projection orthogonal to the jammer subspace� I�e��
we obtain from �
� the asymptotic relation between a sta�
tionary ergodic snapshot sequence and the jammer subspace�
lim����� pS�� PY � PA� where pS denotes the signal power
and Y is the n�L data matrix consisting of L � q statistically
independent snapshot vectors in the columns � �as in ��b� be�
low�� With this property we can reformulate the constraints
w � fa��a�� � � � �aqg and w � fBmaig� m � 
� �� � � � � p�
i � 
� �� � � � � q in an asymptotically �
� � �� pS � �� equiva�
lent form�

w � y�i�� w � fBm
y�i�gm�������� �p� �i ���

Equation ��� describes data�dependent derivative constraints
that do not require any a priori knowledge of the jammer di�
rections� For incorporation these constraints into any adap�
tive beamforming algorithm� one should use new �derivative�
snapshots Bmy�i�� m � 
� �� � � � � p in addition to the conven�
tional data snapshots y�i� for the calculation of the weight
vector�

�� ROBUST ALGORITHMS

���� SMI algorithm

The SMI algorithm computes the weight vector using the
sample covariance matrix �R�

w�i� � �R���k�aS � �R�k� �



L
Y�k�Y�k�H � ��a�

�In the case q � L and �� � �� pS � � the matrix Y becomes
rank de�cient and the projectionPY should not be calculated by

���� but correspondingly with q linear independent columns of Y�

Y�k� � 	y�k� L��y�k � L � 
�� � � � �y�k � 
�� ��b�

The matrix �R�k� is invertible only if L � n and 
� � �� The
relationship between the adaptation window and the beam�
forming snapshot� i�e� the choice of the parameter k � i�
depends on the speci�c application of the algorithm and has
of course a signi�cant in�uence in non�stationary situations�

Let us consider asymptotic property of the weight vector
��a� for strong jammers� In the signal absent case and L � q
the sample covariance matrix can be written as

�R � 
�N�AFA
H

where F is the full rank q�q jammer sample covariance matrix
and 
�N is the n � n matrix containing the noise sample
covariance matrix and jammer�noise sample covariance cross�
terms� Applying the matrix inversion lemma� we have

lim
����� pS��


� �R�� � N
�� �N��A�AH

N
��
A���AH

N
��

This is the oblique projection with respect to the Euclidean
scalar product� For large number of snapshots all jammer�
noise cross�terms vanish and limL��N � I� This means
that

lim
L��� ����� pS��


� �R�� � P
�

A

Hence� the weight vector of the SMI method converges to the
orthogonal projection of the desired signal vector onto the or�
thogonal complement of the jammer subspace� Therefore� the
incorporation of new �derivative� snapshots into the sample
covariance matrix means that the weight vector converges to
the projection of the desired signal vector onto the orthogo�
nal complement of the subspace spanned by vectors fBmaig�
m � �� 
� � � � � p� i � 
� �� � � � � q� Although any order of con�
straints is possible� we consider only �rst�order constraints
�i�e� p � 
�� The robust version of SMI algorithm can then
be expressed as�

w�i� � �R���k�aS � �R�k� � �R�k� � �B �R�k�B

�



L

�
Y�k�Y�k�H � �BY�k�Y�k�HB

�
�
��

The real positive weight � controls the relative contribution
of the �derivative� data�

���� LSMI algorithm

In the LSMI algorithm a small real positive number � is added
to the diagonal of the sample covariance matrix� This diago�
nal load warrants the sample covariance matrix invertibility
in the case L � n� and reduces the variance of the adaptive
weight vector� This allows to consider cases q � L � n� with�
out too serious performance loss and makes the LSMI method
well suited to non�stationary jammer situations� where the
weights should follow the non�stationary jammers� The diag�
onally loaded sample covariance matrix is given by

�RDL�k� � �I�



L
Y�k�Y�k�H �

�

It can be shown that for L � q�

lim
���� ����� pS��

���I� �R��� � P
�

A

Hence� the incorporation of new �derivative� snapshots into
the matrix �

� corresponds asymptotically to constraining
the derivatives of the adapted pattern� As in the modi�ed
SMI method� the weight vector will converge to the projection



of the desired signal vector onto the orthogonal complement
of the subspace spanned by vectors fBmaig� m � �� 
� � � � � p�
i � 
� �� � � � � q� However� the large number of snapshots con�
dition is no longer necessary for the convergence to the or�
thogonal projection onto the orthogonal compliment to the
jammer subspace� By this fact one can expect a better per�
formance of the LSMI method for small�moderate number of
snapshots than of the SMI method�

Following these considerations� we formulate the robust
modi�cation of the LSMI algorithm�

w�i� � �R��DL�k�aS � �RDL�k� � �RDL�k� � �B �R�k�B

� �I�



L

�
Y�k�Y�k�H � �BY�k�Y�k�HB

�
�
��

���� Hung�Turner algorithm

In this method� the property given by the 
st equation of ���
is used directly� so that

w�i� � P
�

Y�k�
aS �

�

The number of snapshots L is here also the dimension of the
subspace on the complement of which is projected and should
be chosen as q � L � n� For �nite INR it is useful to choose
L � q� If L is chosen too large� the jammers are well sup�
pressed� but the gain of the antenna in the desired signal
direction may be small� It was found in 	�� that for large ar�
rays L 	 �q���
q gives a reasonable performance� The robust
version of the HT algorithm using �derivative� snapshots up
to the pth order can be written as�

w�i� � P
�

Q�k�
aS� Q�k� � 	Y�k��BY�k�� � � � �Bp

Y�k��

�
��
For a non�trivial projection �p � 
�L � n� The robust algo�
rithm �
�� requires additional degrees of freedom as compared
with �

�� The choice of the optimum number of snapshots L
is therefore linked to the order of the derivative constraints�
For �
�� no weight � is necessary�

���� Eigenvector projection algorithm

The eigendecomposition of �R�k� can be written as

�R�k� �

nX

i��

�	i�k��ui�k��ui�k�H

where �	i�k�� i � 
� �� � � � � n ��	��k� � �	��k� � � � � � �	n�k��
are the ordered sample eigenvalues �distinct w� p� 
�� �ui�k�

is the sample eigenvector that corresponds to �	i�k�� The
weight vector in EP algorithm is calculated as the orthogonal
projection of the desired signal vector onto the orthogonal
complement to the subspace spanned by M dominant eigen�
vectors�

w�i� � P
�

U�k�
aS� U�k� � 	�u��k�� �u��k�� � � � � �uM�k�� �
��

In moving jammer case it is useful to choose M � q� From
the analogy to the HT algorithm� the robust modi�cation of
the EP algorithm �
�� can be formulated as�

w�i� � P
�

V�k�
aS � V�k� � 	U�k��BU�k�� � � � �Bp

U�k��

�
��
As the robust HT algorithm� this algorithm requires the ad�
ditional degrees of freedom and the choice of the optimum M
is linked to the order p of the derivative constraints�

���� Optimization of derivative constraint weight

Let us discuss the choice of the parameter � in robust SMI and
LSMI methods� In terms of the jammer subspace� the deriva�
tive constraints have the e�ect of additional jammers� If the
contribution of the �derivative� data vectors is too strong as
compared with that of the original data� the depth of the nulls
is not su�cient and� as a result� the jamming power is not
su�ciently suppressed� Conversely� when the contribution of
the original data is much stronger than that of �derivative�
data� the desired null width may be not su�cient� The choice
of the parameter � in �
��� �
�� is therefore very important
for the optimization of the adaptive array performance� Let
us �nd a value of � from the compromise between null depth
and width of the adapted pattern� With respect to moving
jammer scenarios the robustness should improve with increas�
ing �� However� one cannot expect a better result than in a
stationary jammer situation� Therefore� the maximal value
of the parameter � should be limited from above by a max�
imally admissible loss in SINR in the stationary case� i�e� �
should be chosen as a highest value satisfying

SINRopt�SINRrob � � �
��

The loss � � 
 is the price we accept to pay for the im�
proved robustness� SINRopt is the SINR with the weight ����
while SINRrob corresponds to wrob � �R� �BRB��� aS �
The SINR for an arbitrary weight vector w is de�ned as
SINR � pSjw

HaS j
��wHR��w� From the matrix inversion

lemma

wrob � �R�� �R��B����R�� �BR
��
B���BR���aS

Hence� the optimum choice of � depends on unknown jammer
parameters� However� with the following assumptions we can
estimate a value of � independent of these parameters�


� R�� 	 P�
A

� This means that we have strong jammers

and assume �without loss of generality� 
� � 
�
�� P�AaS 	 aS� In other words� let the jammers im�

pinge from sidelobe directions� i�e� jaHS aij
� 
 aHS aS a

H
i ai �

n�� for i � 
� �� � � � � q� This is given� if n � q and then
jjPAaS jj 
 jjaSjj� hence P�

A
aS 	 aS �


� P�AB 	 B� This condition can be approximately ful�

�lled for large� centered arrays �n� q�
P

xl � ��� Then the
vectors ai and Bai are exactly orthogonal for all i� Further�
if the jammers are well separated� such that jaHi Bak j

� 

aHi ai a

H
k B

�ak � n
P

x�l � for i� k � 
� � � � � q� then this means

that AHBA 	 O� from which P�
A
B 	 B follows�

Under these assumptions we can rewrite �
�� as�

a
H
S aS 	aHS aS � �aHS B�




�
I�B

����BaS

�aHS B�



�
I�B

����B��



�
I�B

����BaS �

� 	aHS aS � a
H
S B�




�
I�B

����BaS ��� � � �
��

For a given array� a suitable value of � can be found from
�
�� which depends on the array geometry only� Assuming
centered array and normalizing B� such that jjBajj � jjajj for
any direction vector a� we have that instead of xl we should

use xl�� with � �
pPn

l��
x�l �n� In this case� the left�hand

part of �
�� can be further simpli�ed� and one can �nd that
it gives a monotone curve which is practically independent of
n 	��� 	���
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Figure �� Performance of EP methods with L � 
�� M � ��

�� SIMULATION RESULTS

In simulations we assumed three uncorrelated moving nar�
rowband jammers and a ULA of 
� sensors at 	�� spacing�
The simulated trajectories of angular jammer motion are�

���i� � ��� � �� sin�i�
��� ���i� � ���� � 
�� cos�i�
���

���i� � ���� � 
�� cos�i����

The INR was set to 
� dB for each jammer� and the SNR was
set to ���� dB� in each sensor� respectively� We assumed an
adaptation period without the desired signal present� i�e� a
learning period with � � � in �
�� followed by the beamform�
ing snapshot with the desired signal present �i�e� k � i � �
in ��a�� �
��� �
����
���� This scheme is representative for
active systems�� In simulations� we assumed � � 
�� which
corresponds to 	 
 dB performance loss in the stationary
case� The order of the derivative constraints was always
p � 
� Fig� 
 show the output SINR of the robust and con�
ventional SMI algorithms with L � 
� compared with the
optimal SINR� The similar curves showing the performance
of LSMI� HT� and EP algorithms with L � 
� are shown in
Figs� ���� respectively� For EP algorithms� M � � is taken�

Simulation results demonstrate that the performances of
the conventional algorithms completely fail in moving jammer
environment� while the proposed robust algorithms perform
well in the presence of moving jammers� The proposed ap�
proach can be also e�ciently exploited in the situation of
rapid �uctuations or abrupt changes of jammer DOA s�
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