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ABSTRACT

The performance of adaptive beamforming algorithms is kno-
wn to degrade in rapidly moving jammer environments. This
degradation occurs due to the jammer motion that may bring
the jammers out of the sharp nulls of the adapted direc-
tional pattern. Below, we develop a unified approach allow-
ing to make a wide class of adaptive array algorithms robust
against possible jammer motion. This is achieved by means
of artificial broadening of the null width in all jammer di-
rections. Data-dependent sidelobe derivative constraints are
used which do not require any a prior: information about
the jammers. The robust modifications of several well known
adaptive array algorithms are formulated.

1. INTRODUCTION

The performance of adaptive arrays severely degrades if the
weights are not able to adapt sufficiently fast to the changing
(non-stationary) jamming situation or to the antenna plat-
form motion. Fast adaptation has therefore be the aim of
research in these cases. Moving jammers represent a serious
problem, because for large antennas the directional pattern
nulls are extremely sharp and jammers may soon move out
of the nulls; i.e. high gain antennas are very sensitive to this
type of non-stationarity.

Recently, a large number of robust adaptive beamform-
ing methods has been studied. However, only the robustness
against desired signal positioning errors was addressed. In
this paper, another problem is considered. We assume that
the desired signal direction is exactly known, whereas the rel-
ative angular motion of the jammers may be fast. In other
words, we address another type of robust adaptive array —
the robustness against possible jammer motion. We develop
a unified framework allowing to incorporate this robustness
property into various adaptive beamforming algorithms. The
main idea is to broaden the width of the pattern nulls in the
jammer directions. For this purpose, derivative constraints
are used, which do not require any a prior:information about
the jammers. Similar constraints have been used in [1], [2]
for several particular problems.

We demonstrate the strength and generality of the de-
veloped approach and formulate robust modifications of sev-
eral popular algorithms, such as the Sample Matrix Inver-
sion (SMI) [3], the diagonally loaded SMI (LSMI) [4], the
Hung-Turner (HT) [5], and the Eigenvector Projection (EP)
[6] methods. Although we consider only these algorithms,
the developed approach allows to incorporate the robustness
property into any other type of adaptive beamformer.
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2. DATA-DEPENDENT DERIVATIVE
CONSTRAINTS

We formulate the problem for a linear array of n sensors tak-
ing into account that the approach considered is valid for
planar or volume arrays, too. Let ¢ (¢ < n) narrowband jam-
mers and a single narrowband signal impinge on the array
from unknown directions {61,6>,...,84} and from a known
direction 8g, respectively. Let the jammers be uncorrelated
with each other and with the signal, too. Unless otherwise
specified, the jammer sources are assumed to be stationary
(e.g. non-moving') and the array output vectors are assumed
to be statistically independent. Then the output vector at the
i-th time instant (or snapshot) of the array can be expressed
as:

y(l) = AS(Z) +6Ss(i)as+n(i)’ A= [31,32,...,3(1] (1)
where the jammer direction vectors aj, az, ..., aq, and desired
signal vector as can be modelled as plane waves:

a(0) = (exp{jei&} exp{jeat}, ... exp{izn})”  (2)

Here a(f) is the n x 1 direction vector corresponding to the
angle 8, as = a(fs), £ = (2r/A) sin§, A is the wavelength, z;
is the coordinate of Ith sensor, s(i) = (s1(4), $2(1), ..., 54(¢))7
is the ¢ x 1 vector of random jammer waveforms, and sgs(1) is
the signal waveform. The n x 1 vector n(¢) contains random
sensor noise, while parameter § (0 or 1) indicates the presence
of the signal. The n x n interference-plus-noise covariance
matrix is
R =0T+ ASA"” (3)
where o2 is the noise variance, S = E{s(i)s™ (i)} is the ¢ x ¢
covariance matrix of the jammer waveforms, I is the identity
matrix, and (-)¥ denotes Hermitian transpose.
The complex adaptive beamformer output with the adap-
tive weight vector w at the ith time instant is

2(1) = w(i) "y (i)

In the stationary case and if R is known, the solution for
the optimum weight vector of the adaptive array maximiz-
ing the signal-to-interference-plus-noise ratio (SINR) can be
expressed in the well known form:

Wopt = aRtag (4)

where o is a main beam gain constant, which does not affect
the output SINR and will be omitted below without loss of
generality. Typically, jammers are much more powerful than
the sensor noises and the signal. We use this assumption
below.

1'We use this assumption only for derivations and cancel it later.



Define an orthogonal projection on the column space of
a mi1 X my full rank matrix C and an orthogonal projection
onto its orthogonal complement as

Pc=C(c”Cc)" ¢, PE=1-Pc¢ (5)

respectively. Here mi > ma2, and so PC and Pé are mi X mi
matrices.

Applying the matrix inversion lemma to the matrix I +
o CHCH, where H is any m2 X mo non-singular matrix and
a > 0, gives the property Pé =lima—oo (I + aCHCH) -
Applying it to (3), we get lim,2_g 0 R™! = Pj& =1-Py
where P  is the orthogonal projection onto the jammer sub-
space. This implies that for strong jammers the adaptive
weight vector (4) tends to be orthogonal to the jammer sub-
space, i.e.: imga_ o Wopt L {a1,82,...,a4}. This means that
the antenna pattern WHa(H) has nulls in the jammer direc-
tions. To broaden the null width we may require a higher
order of the null, i.e. by requiring p-th order derivative con-
straints:

o™ (w'a(0)) /0™ |66, =0,

k=1,2,...,q, m=12...,p (6)
Using (2), we can rewrite (6) as
w L {Bmai}m:1,2,...,p; 1=1,2,...,q (7(1)
where
B = diag{z1,z2,...,%n} (70)

To fulfill these constraints, we assume n > (p + 1)q.

In practice, neither R, nor the jammer directions are
known. The only available is the sequence of array snapshots
y (7). However, for high interference-to-noise ratios (INR) and
small signal a projection orthogonal to the array data is the
same as a projection orthogonal to the jammer subspace. l.e.,
we obtain from (1) the asymptotic relation between a sta-
tionary ergodic snapshot sequence and the jammer subspace:
limge_g po—o Py =P p, where ps denotes the signal power
and Y is the n x [ data matrix consisting of 1. > ¢ statistically
independent snapshot vectors in the columns ? (as in (9b) be-
low). With this property we can reformulate the constraints
w L {a;,az,...,a,} and w L {B™a;}, m = 1,2,...,p,
i=1,2,...,¢ in an asymptotically (6> — 0, ps — 0) equiva-
lent form:

wLly(), wLl{B"y(i)}lm=12.p Vi (8)

Equation (8) describes data-dependent derivative constraints
that do not require any a priori knowledge of the jammer di-
rections. For incorporation these constraints into any adap-
tive beamforming algorithm, one should use new “derivative”
snapshots B™y(i), m =1,2,...,p in addition to the conven-
tional data snapshots y(i) for the calculation of the weight
vector.

3. ROBUST ALGORITHMS

8.1. SMI algorithm

The SMI algorithm computes the weight vector using the
sample covariance matrix R:

w(i) = R~} (k)as, R(k):%Y(k)Y(k)H, (9a)

2In the case ¢ < L and 0 = 0, pg = 0 the matrix Y becomes
rank deficient and the projection PY should not be calculated by

(5), but correspondingly with ¢ linear independent columns of Y.

Y(k) =[y(k=L),y(k=L+1),...,y(k—1)] (99)

The matrix R(k) is invertible only if L > n and ¢* > 0. The
relationship between the adaptation window and the beam-
forming snapshot, i.e. the choice of the parameter k — ¢,
depends on the specific application of the algorithm and has
of course a significant influence in non-stationary situations.

Let us consider asymptotic property of the weight vector
(9a) for strong jammers. In the signal absent case and L > ¢
the sample covariance matrix can be written as

R=0°N+AFAT

where F is the full rank ¢ x¢ jammer sample covariance matrix
and ¢°N is the n x n matrix containing the noise sample
covariance matrix and jammer-noise sample covariance cross-
terms. Applying the matrix inversion lemma, we have
lim FCRTT=NT-NTAAINTTA)TIAINT!
020, ps—0
This is the oblique projection with respect to the Euclidean
scalar product. For large number of snapshots all jammer-
noise cross-terms vanish and limz_—o N = I. This means
that - .
L—>oo,o'12H—I>10,p5—>Oa R - PA
Hence, the weight vector of the SMI method converges to the
orthogonal projection of the desired signal vector onto the or-
thogonal complement of the jammer subspace. Therefore, the
incorporation of new “derivative” snapshots into the sample
covariance matrix means that the weight vector converges to
the projection of the desired signal vector onto the orthogo-
nal complement of the subspace spanned by vectors {B™a; },
m=20,1,...,p, ¢+=1,2,...,q. Although any order of con-
straints is possible, we consider only first-order constraints
(i.e. p =1). The robust version of SMI algorithm can then
be expressed as:

w(i) =R (k)as, R(k)=R(k)+¢BR(k)B

_ % (Y(K)Y (k)™ + ¢ BY (k)Y (k) B) (10)

The real positive weight ¢ controls the relative contribution
of the “derivative” data.

8.2. LSMI algorithm

In the LSMI algorithm a small real positive number « is added
to the diagonal of the sample covariance matrix. This diago-
nal load warrants the sample covariance matrix invertibility
in the case L < n, and reduces the variance of the adaptive
weight vector. This allows to consider cases ¢ < L < n, with-
out too serious performance loss and makes the LSMI method
well suited to non-stationary jammer situations, where the
weights should follow the non-stationary jammers. The diag-
onally loaded sample covariance matrix is given by

Row(k) = 41+ %Y(k)Y(k)H (11)

It can be shown that for L > ¢,

lim I+R)™ =P}
~¥—0, 62—0,pg—0 7(7 ) A

Hence, the incorporation of new “derivative” snapshots into

the matrix (11) corresponds asymptotically to constraining

the derivatives of the adapted pattern. As in the modified

SMI method, the weight vector will converge to the projection



of the desired signal vector onto the orthogonal complement
of the subspace spanned by vectors {B™a;}, m =0,1,...,p,
1 =1,2,...,q. However, the large number of snapshots con-
dition is no longer necessary for the convergence to the or-
thogonal projection onto the orthogonal compliment to the
jammer subspace. By this fact one can expect a better per-
formance of the LSMI method for small/moderate number of
snapshots than of the SMI method.

Following these considerations, we formulate the robust
modification of the LSMI algorithm:

w(i) = R5i(k)as, Rou(k) =Rou(k)+(BR(k)B

=~I+ % (Y(R)Y(K)" +¢BY(k)Y(K)"B)  (12)

3.3. Hung-Turner algorithm

In this method, the property given by the 1st equation of (8)
is used directly, so that

w(i) = Pi—(k)as (13)

The number of snapshots L is here also the dimension of the
subspace on the complement of which is projected and should
be chosen as ¢ < L < n. For finite INR it is useful to choose
L > ¢q. If L is chosen too large, the jammers are well sup-
pressed, but the gain of the antenna in the desired signal
direction may be small. Tt was found in [7] that for large ar-
rays L ~ 2¢...3q gives a reasonable performance. The robust
version of the HT algorithm using “derivative” snapshots up
to the pth order can be written as:

w(i) = Pé(k)as, Q(k) =[Y(k),BY(k),..., BPY (k)]
(14)
For a non-trivial projection (p + 1)L < n. The robust algo-
rithm (14) requires additional degrees of freedom as compared
with (13). The choice of the optimum number of snapshots L
is therefore linked to the order of the derivative constraints.
For (14) no weight ¢ is necessary.

3.4. Eigenvector projection algorithm

The eigendecomposition of R(k) can be written as
R(k) =Y Ao(k)iu (k)i (k)"
=1

where Ai(k), 1 = 1,2,..., 0 (Ai(k) > Aa(k) > - > Au(k))
are the ordered sample eigenvalues (distinct w. p. 1), @;(k)
is the sample eigenvector that corresponds to L(k) The
weight vector in EP algorithm is calculated as the orthogonal
projection of the desired signal vector onto the orthogonal
complement to the subspace spanned by M dominant eigen-
vectors:

w(i) = Py, a5, U(K) = [ (k), k), ... am(k)] (15)

In moving jammer case it is useful to choose M > ¢. From
the analogy to the HT algorithm, the robust modification of
the EP algorithm (15) can be formulated as:

w(i) = P{,(k)as, V(k)=[U(k),BU(k),..., B?U(k)]
(16)
As the robust HT algorithm, this algorithm requires the ad-
ditional degrees of freedom and the choice of the optimum M
is linked to the order p of the derivative constraints.

8.5. Optimization of derivative constraint weight

Let us discuss the choice of the parameter ¢ in robust SMI and
LSMI methods. In terms of the jammer subspace, the deriva-
tive constraints have the effect of additional jammers. If the
contribution of the “derivative” data vectors is too strong as
compared with that of the original data, the depth of the nulls
is not sufficient and, as a result, the jamming power is not
sufficiently suppressed. Conversely, when the contribution of
the original data is much stronger than that of “derivative”
data, the desired null width may be not sufficient. The choice
of the parameter ¢ in (10), (12) is therefore very important
for the optimization of the adaptive array performance. Let
us find a value of ¢ from the compromise between null depth
and width of the adapted pattern. With respect to moving
jammer scenarios the robustness should improve with increas-
ing (. However, one cannot expect a better result than in a
stationary jammer situation. Therefore, the maximal value
of the parameter ¢ should be limited from above by a max-
imally admissible loss in SINR in the stationary case, i.e. ¢
should be chosen as a highest value satisfying

SINRopi /SINRyop < 11 (17)

The loss II > 1 i1s the price we accept to pay for the im-
proved robustness. SINR,p¢ is the SINR with the weight (4),
while SINR;o» corresponds to wiop = (R—l—CBRB)_1 as.
The SINR for an arbitrary weight vector w is defined as
SINR = ps|was|?/w”R™"w. From the matrix inversion
lemma

wiob = (R™'=R7'B(¢("'R™' + BR™'B)"'BR ')as

Hence, the optimum choice of ¢ depends on unknown jammer
parameters. However, with the following assumptions we can
estimate a value of ¢ independent of these parameters:

1. R7' ~ Pj&. This means that we have strong jammers
and assume (without loss of generality) o = 1.

2. Pj&as ~ ag. In other words, let the jammers im-
pinge from sidelobe directions, i.e. |agai|2 & afagafla, =
n?, fori=1,2,...,q. This is given, if n > ¢ and then
||PAas|| < ||as||, hence Pj&as ~ ag.

3. PIJ&B ~ B. This condition can be approximately ful-
filled for large, centered arrays (n > ¢, > x; = 0). Then the
vectors a; and Ba, are exactly orthogonal for all :. Further,
if the jammers are well separated, such that |a Bay|> <
afa;afB%a, = n E ¢, for i,k = 1,...,q, then this means
that AZBA ~ O, from which PIJ&B ~ B follows.

Under these assumptions we can rewrite (17) as:

agas [agas — ZagB(%I + B2)_1Bas

+a§B(%I + B2)_1B2(%I + B*)"'Bas]

«[aZas — a?B(%I—i— B 'Bas] 2 <1 (18)

For a given array, a suitable value of ¢ can be found from
(18) which depends on the array geometry only. Assuming
centered array and normalizing B, such that ||Ba|| = ||a|| for
any direction vector a, we have that instead of x; we should
use z;/p with p = Elnzl zZ/n. In this case, the left-hand
part of (18) can be further simplified, and one can find that
it gives a monotone curve which is practically independent of

n 8], [9]-
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Figure 1: Performance of SMI methods with 1 = 32.
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Figure 2: Performance of LSMI methods with I = 10.
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Figure 3: Performance of HT methods with L = 10.
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Figure 4: Performance of EP methods

with L = 10, M = 9.

4. SIMULATION RESULTS

In simulations we assumed three uncorrelated moving nar-
rowband jammers and a ULA of 32 sensors at A/2 spacing.
The simulated trajectories of angular jammer motion are:

61(1) = 20° + 5°sin(i/15), G2(d) = —40° — 10° cos(i/15),

(1) = —25° + 10° cos(i/20)

The INR was set to 30 dB for each jammer, and the SNR was
set to —7.5 dB, in each sensor, respectively. We assumed an
adaptation period without the desired signal present, i.e. a
learning period with 8 = 0 in (1), followed by the beamform-
ing snapshot with the desired signal present (i.e. k—i =10
in (9a), (10), (12)—(16)). This scheme is representative for
active systems”. In simulations, we assumed ¢ = 1.5 which
corresponds to ~ 1 dB performance loss in the stationary
case. The order of the derivative constraints was always
p = 1. Fig. 1 show the output SINR of the robust and con-
ventional SMI algorithms with I = 32 compared with the
optimal SINR. The similar curves showing the performance
of LSMI, HT, and EP algorithms with I = 10 are shown in
Figs. 2-4, respectively. For EP algorithms, M = 9 is taken.
Simulation results demonstrate that the performances of
the conventional algorithms completely fail in moving jammer
environment, while the proposed robust algorithms perform
well in the presence of moving jammers. The proposed ap-
proach can be also efficiently exploited in the situation of
rapid fluctuations or abrupt changes of jammer DOA’s.
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