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ABSTRACT

This paper is devoted to implementation of Extended
Lapped Transform (ELT), which is among the most ef-
ficient factorization methods for paraunitary filterbanks.
First we utilize the special form of the matrices in the
part of factorization of ELT to process data at input
data rate in a pipelined structure with minimal number
of processor elements without inserting additional de-
lays. Next we suggest an algorithm for DCT-IV trans-
form, the other part of ELT factorization, with a con-
stant geometry structure suitable for the use of perfect-
shuffle network.

1 INTRODUCTION

Multirate filter banks and lapped transforms are power-
ful tools in modern digital signal processing. Although
studied independently in the past, both represent the
same concept [1].

In this work we consider the algorithm that is suit-
able for modular hardware implementation of extended
lapped transform (ELT) [2], which is among the most
efficient factorization methods for a paraunitary filter
bank. This class of transforms includes modified cosine
or modulated lapped transforms (MLT) [1],[3], when
the length of filters in the equivalent filter bank is con-
strained to be equal to twice the number of subbands.
For the applications of ELT we refer to the [1], [4], [5].

The fast ELT structure (see Fig.l and (3),(4)) is
based on DCT-IV block transform plus K butterfly
stages. For M-band ELT the computational complex-
ity is of order MK + M log, M. For data-serial input
architecture based on one arithmetic unit will perform
O(K +log, M) operations per sample, thus constraining
the input data rate. The maximally parallel structure
containing O(M K + M log, M) computational elements
has the highest data rate for this algorithm independent
on M and K with the delay of K 4 log, M stages.

We propose a parallel structure with O(K + M) com-
putational elements and the same throughput as the
maximally parallel structure.

First, we utilize the special form of the matrices in
the first part of the factorization of ELT to process data

prog@cs.tut.fi, jta@cs.tut.fi

subbands out
outpu
) T sl AT

E2)J JE @)

B 7 2-1
input I %

Figure 1: ELT polyphase structure (3),(4)

at input data rate in a pipelined structure with minimal
number of processor elements without inserting addi-
tional delays. Next we realize directly DCT-IV trans-
form, the other part of ELT factorization, on perfect
shuffle network and derive a constant geometry fast al-
gorithm.

2 DEFINITIONS

Lapped transforms are defined by the rectangular ma-
trix P with the elements determining the impulse re-
sponses of the analysis and synthesis filters, that 1s,

fk(n) =Pui> hk = fk(NM_ 1- n) :pNM—l—n,k’ (1)

where k =0,1,....M -1, n=0,1, NM — 1. For ELT
the basis functions are defined as
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where h(n) is the low-pass prototype, and the length of
the basis functions should be an even multiple of the
number of subbands M, i.e., N = 2K. K 1is called over-
lap factor and for modulated lapped transform we have
K=1.

According to fast algorithm for ELT [1] the polyphase
component matrix F for the equivalent filter bank can
be factorized in the following way
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where CTV is the type IV cosine transform [6],
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and Cy = diag{cos(d,,)cos(f, ,)---cos(f
diag{sin(0, ,)sin(0, ,)---sin(d,,,,_, ),
tion angles and free parameters in the design of an ELT
[1], J is the counterdiagonal matrix (ones only in the
counter diagonal). See Fig.l and (3),(4) for analysis
and synthesis sections of the ELT.
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3 CONSTANT GEOMETRY FAST DCT-IV
ALGORITHMS

In [7] we have presented a general method to transfer
certain kind of fast algorithms to algorithms with con-
stant geometry (CG) structure. It was indicated that
two CG algorithms for Discrete sine transform (DST-
IV) can be derived from Wang’s DST-IV algorithm [6]
and one of them was presented. These algorithms can
be applied also to DCT-IV transform because of the re-
lation:
ctV = Jstvy (5)

where CTV STV are the DCT-IV and DST-IV transform
matrices accordingly, I = diag ((—1)2) ,0=0,...,.M
1.

The CG DCT-1IV algorithm is derived from the one
presented in [7] for DST-IV. Denote
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where n = logM, i = 1,...,n — 2, d' = d(2' +
t),d(k +1t) = cos[(h, (t) +1/2) 5 ] h, (1) corresponds to
Hadamard reordermg [6][7]. Then DCT-1V transform
matrix C’QI,Y is decomposed as (without normalization
factors)

n—1
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where H is the Hadamard reordering matrix,
T

PM,2(xD’x1""’xM—1) =
C 7 TR S S ) is the unshufile
reordering, DI = dzag(sm[LM(h (z)—i—%)]),z =
0,...,M—1.
n—2 times
Pl = PM,2RM i 'PM,2RM (9)

The efficient bit level generation of indeces accord-
ing to P, with O(log M) area and delay complexity was
suggested in [7].

The other algorithm can be derived in analogous to
the previous way. Denote
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Now DCT-IV transform matrix C’QI,Y (without normal-
ization factors) is decomposed as

n—1
ctV = gprrpr (H(B,pgﬂ)) B P,

i=1

where
n—1 times

P, =P, R, ... P,,R, (10)

and other notations are the same as for the previous
algorithm. The flow graph of this algorithm is shown in
Fig.2.

4 ELT ARCHITECTURE

For efficient implementation of ELT we propose the
combined pipelined-perfect shuffle network (see Fig.4).
Pipeline part consists of K arithmetic units connected
in chain and every arithmetic unit is responsible for se-
quential calculation of M /2 butterflies per block. This
is possible because in the polyphase structure of Fig.1
the data are processed block by block, and every block is
formed in M stages as M input data sequentially arrive.
The processing of data in pipeline part is performed with
the same rate as that of input data.

Because of structure of butterfly matrices D; the
delay-invert (DI) memory unit is used to arrange pairs
of input data for butterflies sequentially in time (see
Fig.3c). DI unit inverts with M/2 delay the sequence
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Figure 2: Constant geometry DCT-IV algorithm derived from Wang’s DST-IV algorithm [6]

EHEL B s
E

ah et

ﬁ 12 time
I1 -« X5 X, X X,
I2
I -« X, Xg X5 Xy
1 [ R R N A B
time

Figure 3: Delay-invert (DI) realizations and DI example for M = 8

block. Two realizations of DI are presented in Fig.3a-
3b. The first is composed of the M /2 shift registers and
switches. First M/2 stages ¢, z,,.. ., Ty, dataof a
block are shifted to the M /2 registers. Next M /2 stages
due to the shifted one bit signal inverted data occur on
the output.

Because of processing at input data rate and pipelin-
ing, i.e., compressing M channels in polyphase struc-
ture to two in our case, the delays 2= 1, 2~ 2, distributed
among channels and represented by matrices Z; in fac-
torizations (3),(4), will be provided by the common de-
lays =M >=M/2 implemented as blocks of shift regis-
ters (BSR) as in Fig.4.

In our structure arithmetic units (PE) are performing
calculations M /2 stages staying idle the other M /2. This
can be avoided by two-channel processing. In this case
DI unit in Fig.3b can be used and the common delays
will be of length 272 and z=™_ In our case, because
the next batch of input data pairs is delayed by M/2
stages, then the number of shift registers can be set to
z=M =M/2 performing shifting by SRB only for those
cycles when PE from the left is loaded.

Then data are collected for computation of DCT-1V
with perfect-shuffle network (PSN). This is performed
by the column of M/4 processor elements (PE). Every
PE has 4 inputs and 4 outputs. The two outputs of p-th
PE,p=0,1,...,M/4—1, are connected to two outputs
of LMJ PE, and the other two to the inputs of

[MJ PE. In other words, indexing the inputs

and outputs of PE’s column as 0,1,..., M — 1, the k-th
output is connected to 2kmodM input.

Analysing the presented CG DCT-IV algorithms (see
also Fig.2), one can see that in every stage of algorithm
(index ¢) 4 point operations are followed by fixed re-
ordering PJg)Q (perfect shuffle). The network connecting

PEs serves for reordering PJg)Q and PE column sequen-
tially calculates multiplication by matrices B;. Compar-
ing the two algorithms in Section 3, one can see that
the block diagonal matrices B, _, in the first one con-
tain two equal coefficients in a block, while the other
has two different. The choice of the first one in our im-
plementation is aimed at the reduction of memory to

hold these coefficients.

Every PE contains two multipliers. The changing of
signs by [ is performed at the end of pipelined stage.
The different operations performed by PE on the input
Z = (%1, ®2,23,24) are coded as O; = O(¥,d, x,000),
02 = O(f,d,*,()()l), 03 = O(f,dl,dz,()l()), 04 =
O(Z,dy,d»,011), Os = O(Z, dy, ds, 100).
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The DCT-1V calculation is performed by the algorithm

parallel input z,...,z,, |
Reordering P;
For p =0 to M/4 — 1 do in parallel

O(Z, 2d3, ,001)
end p
For i =1 to n — 2 do in sequential

Perf.shuffle PJg)Q in parallel

For p=0 to M/4—1 do in parallel

k = pmod2’, O(Z, 2d:,, x,001)

end p
end ¢
For p =0 to M/4 — 1 do in parallel

O(Z,2d7% |, 2d°P1' 010)

*) O(Z,2d% 24+ 011), O(Z, 2d+2, 24213 100)
end p
end

Operations O; — Oz differ only by exchanging of in-
termediate results and PE unit performs one of them by
changing appropriately the states of switches.

Operations *) are not necessary if scaled outputs
could be processed in subbands. For synthesis part the
transpose structure is used.

The log M iterations of PSN network [10], with A//4
processor units for our case when performed at the in-
put data rate do not influence the real-time processing
because of order M decimation. Decimators are syn-
chronized with the input switch to correctly form data

blocks for DCT-IV module.
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Figure 5: Perfect shuffle network
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